Abstract 17230: Early Continuous EEG Biomarkers Predicts Neurologic Outcome in Post-cardiac Arrest Rats

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Joosuk Oh ◽  
Tulasi Jinka ◽  
Xiaodan Ren ◽  
William C Stacey ◽  
Robert W Neumar

Introduction: Hypothermic targeted temperature management (TTM) has greatly improved post-cardiac arrest patient outcomes, but also makes prognostication more difficult. In this study, we tested the hypothesis that early continuous EEG biomarkers are associated with neurologic outcome in post-cardiac arrest rats treated with normothermic and hypothermic TTM. Methods: Male rats were instrumented for continuous telemetric EEG (cEEG) recording and then subjected to 8-minute asphyxia cardiac arrest. Eight rats that achieved ROSC underwent either normothermic or hypothermic TTM (37 ± 0.5 °C or 33 ± 0.5 °C) for 24 hours and cEEG monitoring up to 72 hours. Quantitative EEG analysis determined the power density of delta (0.1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz) and sigma (13-18 Hz) frequency bands in all 10 second windows. The mean spectral power and Spearman correlation with time for the first 12 hours after return of spontaneous circulation (ROSC) were calculated and correlated with best neurologic function score (NFS) and survival with good NFS (NFS ≥ 450 out of 500). Results: Over all rats tested, the mean delta band power in the first 12 hours after ROSC was inversely correlated with best neurologic function score and associated with poor outcome (Table and Figure). There was no statistical difference in other frequency bands. Similar findings were present when stratifying into normothermic and hypothermic treatment groups. Conclusions: This study suggests that, the early power density of delta frequency bands from cEEG is a potential predictor of neurologic outcome in a mixed population of rats treated with normothermic and hypothermic TTM.

Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Michael Bernett ◽  
Robert A Swor

Introduction: Head computed tomography (HCT) is often performed to assess for hypoxic-ischemic brain injury in resuscitated out of hospital cardiac arrest (OHCA) patients. Our primary objective was to assess whether cerebral edema (CE) on early HCT is associated with poor survival and neurologic outcome post OHCA. Methods: We included subjects from a prospectively collected cardiac arrest database of OHCA adult patients who received targeted temperature management (TTM) at two academic suburban hospitals from 2009-Sept-2018. Cases were included if a HCT was performed in the emergency department (ED). Patient demographics and cardiac arrest variables were collected. HCT results were abstracted by study authors from radiology reports. HCT findings were categorized as no acute disease, evidence of CE, or excluded (bleed, tumor, stroke). Outcomes were survival to discharge or cerebral performance scores (CPC) at discharge of three or four (poor neurologic outcome). Descriptive statistics, univariate, multivariate, survival, and interrater reliability analysis were performed. Results: During the study period, there were 425 OHCA, 277 cases had ED HCTs performed; 254 cases were included in the final survival analysis. Patients were predominately male, 189 (65.0%), average age 60.9 years, average BMI of 30.5. Of all cases, 44 (15.9%) showed CE on CT. Univariate analysis demonstrated that CE was associated with 9.2-fold greater odds of poor outcome (OR: 9.23; 95% CI 1.73, 49.2), and 9.1-fold greater odds of death (OR: 9.09: 95% CI 2.4 33.9). In adjusted analysis, CE was associated with 14.9-fold greater odds of poor CPC outcome (AOR: 14.9, 95% CI, 2.49, 88.4), and 13.7-fold greater odds of death (AOR: 13.7, 95% CI, 3.26, 57.4). Adjusted survival analysis demonstrated that patients with CE on HCT had 3.6-fold greater hazard of death than those without CE (HR: 3.56: 95% CI 2.34, 5.41). Interrater reliability demonstrated excellent agreement between reviewers for CE on HCT (κ = 0.86). Conclusion: The results identify that abnormal HCTs early in the post-arrest period in OHCA patients are associated with poor rates of survival and neurologic outcome. Prospective work is needed to confirm whether selection bias or other variables confound this association.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Ian R Drennan ◽  
Steve Lin ◽  
Kevin E Thorpe ◽  
Jason E Buick ◽  
Sheldon Cheskes ◽  
...  

Introduction: Targeted temperature management (TTM) reduces neurologic injury from out-of-hospital cardiac arrest (OHCA). As the risk of neurologic injury increases with prolonged cardiac arrests, the benefit of TTM may depend upon cardiac arrest duration. We hypothesized that there is a time-dependent effect of TTM on neurologic outcomes from OHCA. Methods: Retrospective, observational study of the Toronto RescuNET Epistry-Cardiac Arrest database from 2007 to 2014. We included adult (>18) OHCA of presumed cardiac etiology that remained comatose (GCS<10) after a return of spontaneous circulation. We used multivariable logistic regression to determine the effect of TTM and the duration of cardiac arrest on good neurologic outcome (Modified Rankin Scale (mRS) 0-3) and survival to hospital discharge while controlling for other known predictors. Results: There were 1496 patients who met our inclusion criteria, of whom 981 (66%) received TTM. Of the patients who received TTM, 59% had a good neurologic outcome compared to 39% of patients who did not receive TTM (p< 0.001). After adjusting for the Utstein variables, use of TTM was associated with improved neurologic outcome (OR 1.60, 95% CI 1.10-2.32; p = 0.01) but not with survival to discharge (OR 1.23, 95% CI 0.90-1.67; p = 0.19). The impact of TTM on neurologic outcome was dependent on the duration of cardiac arrest (p<0.05) (Fig 1). Other significant predictors of good neurologic outcome were younger age, public location, initial shockable rhythm, and shorter duration of cardiac arrest (all p values < 0.05). A subgroup analysis found the use of TTM to be associated with neurologic outcome in both shockable (p = 0.01) and non-shockable rhythms (p = 0.04) but was not associated with survival to discharge in either group (p = 0.12 and p = 0.14 respectively). Conclusion: The use of TTM was associated with improved neurologic outcome at hospital discharge. Patients with prolonged durations of cardiac arrest benefited more from TTM.


Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Jung Soo Park

Aim: We aimed to investigate the prognostic performance between serum NSE and cerebrospinal fluid (CSF) NSE for 6-month neurologic outcome in OHCA survivors underwent target temperature management (TTM). Hypothesis: We hypothesized that the NSE levels measured in the CSF would affect the change, earlier and more sensitively than serum, according to severity of hypoxic brain damage. Methods: This single-centre prospective observational study included out-of-hospital cardiac arrest (OHCA) patients underwent TTM. NSE levels were assessed in blood and CSF samples obtained immediately (Day 0), and 24 h (Day 1), 48 h (Day 2), and 72 h (Day 3) after return of spontaneous circulation (ROSC). The primary outcome was the 6-month neurological outcome. Results: We enrolled 34 patients (males, 24; 70.6%), 16 (47.1%) had a poor neurologic outcome. CSF NSE and serum NSE values were significantly higher in the poor outcome group compared to the good outcome group at each time point, except for serum Day 0. CSF NSE and serum NSE had area under curve (AUC) of 0.819-0.972 and 0.648-0.920, respectively. CSF NSE prognostic performances were significant higher than serum NSE at Day 1 and showed excellent AUC values (0.969; 95% Confidential Interval [CI] 0.844-0.999) and high sensitivity (93.8%; 95% CI 69.8-99.8) at 100% specificity. Conclusion: We found CSF NSE values were highly predictive and sensitive markers of 6-month poor neurological outcome in OHCA survivors treated with TTM at Day 1 after ROSC. Thus, CSF NSE level at day 1 after ROSC can be a useful early prognosticator in OHCA survivors.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_2) ◽  
Author(s):  
Yeonho You ◽  
Jung Soo Park ◽  
Jin Hong Min

Introduction: We evaluated prognostic value of ICP measurement via lumbar puncture to predict outcome of cardiac arrest patients treated with TTM Methods: This was a single-center observational cohort study using paper sheets of patients from October 2012 to June 2017. The primary endpoint was the ability of the early ICP measurement to predict poor outcome within 24 h after cardiac arrest, compared to ONSD and GWR. Based on previous studies, 32 patients were needed to achieve the power of 0.90 at a significance level of 0.05. The ROC curves was used to compare the values of ONSD, GWR and ICP for predicting neurologic outcomes. Results were considered significant at P < 0.05. Results: 103 patients were enrolled and good outcome group had 31 patients, while poor outcome group had 72 patients. The AUROC of ONSD and GWR were 0.64(0.54-0.73) and 0.63 (0.53-0.72) respectively in predicting poor neurologic outcome while the AUROC of ICP was 0.97(0.92-0.99) in predicting poor neurologic outcome (Fig. 2). As the cut off value of ICP was 200 mmH 2 O, sensitivity was 87.50% and specificity was 100.00% in predicting poor neurologic outcome. In ONSD, sensitivity was 78.43% and specificity was 41.86% in predicting poor neurologic outcome when cut off value was 5.50 mm. As the cut off value of GWR was 1.16, sensitivity was 59.72% and specificity was 74.19% in predicting poor neurologic outcome. Conclusion: In this study, we confirms that ICP measurement via lumbar puncture within the first 24 h after cardiac arrest is a valuable tool to evaluate the severity of post-cardiac arrest brain injuries and outcome in patients treated with TTM.


2019 ◽  
Vol 8 (9) ◽  
pp. 1480
Author(s):  
Yong Hun Jung ◽  
Byung Kook Lee ◽  
Kyung Woon Jeung ◽  
Dong Hun Lee ◽  
Hyoung Youn Lee ◽  
...  

We investigated whether achieving estimated average glucose (EAG) levels versus achieving standard glucose levels (180 mg/dL) was associated with neurologic outcome in cardiac arrest survivors. This single-center retrospective observational study included adult comatose cardiac arrest survivors undergoing therapeutic hypothermia (TH) from September 2011 to December 2017. EAG level was calculated using HbA1c obtained after the return of spontaneous circulation (ROSC), and the mean glucose level during TH was calculated. We designated patients to the EAG or standard glucose group according to whether the mean blood glucose level was closer to the EAG level or 180 mg/dL. Patients in the EAG and standard groups were propensity score- matched. The primary outcome was the 6-month neurologic outcome. The secondary outcomes were hypoglycemia (≤70 mg/dL) and serum neuron-specific enolase (NSE) at 48 h after ROSC. Of 384 included patients, 137 (35.7%) had a favorable neurologic outcome. The EAG group had a higher favorable neurologic outcome (104/248 versus 33/136), higher incidence of hypoglycemia (46/248 versus 11/136), and lower NSE level. After propensity score matching, both groups had similar favorable neurologic outcomes (24/93 versus 27/93) and NSE levels; the EAG group had a higher incidence of hypoglycemia (21/93 versus 6/93). Achieving EAG levels was associated with hypoglycemia but not neurologic outcome or serum NSE level.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Min-Jeong Lee ◽  
Minjung Kathy Chae

Abstract Background and Aims Therapeutic hypothermia or targeted temperature management (TTM) has been standard treatment for cardiac arrest survivors with suspected hypoxic ischemic brain injury for improvement in both survival and neurological outcomes. TTM is consisted of an induction phase of quickly lowering the temperature to target temperature (ranging from 32°C -36°C) as soon as possible, a hypothermia maintenance phase of keeping the body temperature at target temperature for at least 24 hours, a rewarming phase of slowly rewarming the temperature to normothermia, and a normothermia phase of keeping the body temperature at normothermia. During the dynamic changes in body temperature, cold-diuresis is a commonly described phenomenon. However, limited studies have characterized cold-induced diuresis during TTM. In this study, we sought to determine urine output changes during post cardiac arrest therapeutic hypothermia. Method This retrospective cohort study included adult patients who underwent TTM after out-of-hospital cardiac arrest and were admitted to the intensive care unit for post cardiac arrest care between January 2012 and August 2018. The exclusion criteria of this study were as follows: 1) deceased status before the completion of all phase of TTM; 2) previous end stage kidney disease patients, 3) undergoing renal replacement therapy due to AKI within 48 hours of TTM termination; 4) terminal cancer less than 6 months of life expectancy or previously cerebral performance category (CPC) 3 or more. The neurologic outcome was assessed using the CPC score after 1 month. Good neurologic outcome was defined as a CPC score of 1, 2 and poor neurologic outcome as a CPC score of 3 to 5. The post cardiac arrest protocol recommends a target temperature of 33°C unless the patient is hemodynamically unstable or has a bleeding tendency or severe infection. Rewarming rate was 0.15°C/hr or 0.25°C/hr. TTM was conducted with the use of temperature managing devices with a feedback loop system (Artic Sun Energy Transfer Pads, Medivance Corp., Louisville, CO, USA; Cool Guard Alsius Icy Heat Exchange Catheter, Alsius Corporation, Irvine, CA, USA). We calculated the hourly IV fluid input and urine output rates for each TTM phase. To compare the mean of urine volume between each TTM phase, we used repeated measure analysis of variance (ANOVA). Results 178 Patients included in the analysis. We observed a increase in urine output rates during hypothermia induction. This effect persisted even after adjustment for variable clinical confounders, including intravenous fluid input rate, mean arterial pressure (MAP), initial shockable rhythm, SOFA score, body mass index, and IV furosemide use. However, we did not detect any evidence of urine output increases or decreases during the hypothermia maintenance or rewarming phases. By repeating measures ANOVA and a linear mixed model, it was confirmed that there is a difference in urine output for each TTM phase. Even after the post hoc analysis was calibrated with several variables, only the hypotheria induction phase differed significantly from the urine output of the phase. Conclusion Although our results are some limitations, the findings support the potential presence of cold-induced dieresis, but not rewarm anti-diuresis during TTM. Our study may not fully capture the extent of renal impairment in post cardiac arrest undergoing TTM. However, our objective was to characterize urine output during TTM in post cardiac arrest patients. This has important implications for fluid management in patients undergoing TTM.


Sign in / Sign up

Export Citation Format

Share Document