Abstract 261: Assessment of Area Duty Cycle in Manual Chest Compressions During Out-of-Hospital Cardiopulmonary Resuscitation

Circulation ◽  
2018 ◽  
Vol 138 (Suppl_2) ◽  
Author(s):  
Sofía Ruiz de Gauna ◽  
Jesus M Ruiz ◽  
Digna M González-Otero ◽  
Mikel Leturiondo ◽  
Jose J Gutiérrez ◽  
...  

Introduction: To be compliant with resuscitation guidelines, chest compressions (CCs) should be provided at a rate between 100 and 120 min -1 and a depth between 50 and 60mm during cardiopulmonary resuscitation (CPR). However, two manual CCs coincident in rate (the inverse of duration) and depth can show very different compression waveforms (left figure: the narrower CC depicted in blue suggests a higher impulse compression/decompression pattern). We hypothesized that area duty cycle (ADC) could characterize the narrowness of manual CCs. Objective: To assess the ADC of manual CCs during out-of-hospital CPR and its relationship with rate and depth. Methods: We collected electronic recordings containing compression signals from Philips HeartStart MRx monitor-defibrillators used in 30 patients during out-of-hospital CPR. ADC was defined as the ratio between the area under the compression curve (dashed area in the right figure) and the total area of the compression cycle with maximum depth (area of the red box). For each CC, we annotated the compression duration T c , the area under the depth curve A, and the maximum compression depth D. ADC was computed as 100·A/T c ·D (%). The linear relationship of ADC with compression rate and depth was assessed. Results: A total of 66,971 CCs were annotated. Medians (5 th -95 th percentiles) for compression rate, depth and ADC were 109.9 min -1 (93.8, 133), 46.5 mm (30.1, 61.7), and 41.9% (32.1, 49.5), respectively. ADC showed a very low correlation with rate and depth, favoring ADC’s independence. For every 10 min -1 increase in rate, ADC increased 0.16%. For every 10 mm increase in depth, ADC decreased 0.5%. Conclusions: ADC metric could be used for characterizing the narrowness of manual CCs, independently of depth and rate. This finding could contribute to improve understanding of manual CPR dynamics and their influence on patient’s outcome.

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jakob E Thomsen ◽  
Martin Harpsø ◽  
Graham W Petley ◽  
Svend Vittinghus ◽  
Charles D Deakin ◽  
...  

Introduction: We have recently shown that Class 1 electrical insulating gloves are safe for hands-on defibrillation. Continuous chest compressions during defibrillation reduce the peri-shock pauses and increase the subsequent chance of successful defibrillation. In this study we have investigated the effect of these electrical insulation gloves on the quality of chest compressions, compared with normal clinical examination gloves. Methods: Emergency medical technicians trained in 2010 resuscitation guidelines delivered uninterrupted chest compressions for 6 min on a manikin, whilst wearing Class 1 electrical insulating gloves or clinical examination gloves. The order of gloves was randomized and each session of chest compressions was separated by at least 30 min to avoid fatigue. Data were collected from the manikin. Compression depth and compression rate were compared. Results: Data from 35 participants are shown in Figure 1. There was no statistically significant difference between Class 1 electrical insulating gloves in chest compression depth (median±range: 45 (28-61) vs 43 (28-61) p=0.69) and chest compression rate (113 (67-150) vs 113(72-145), p=0.87) when compared to clinical examination cloves. Conclusion: These preliminary data suggest that the use of Class 1 electrical insulation gloves does not reduce the quality of chest compressions during simulated CPR compared to clinical examination gloves.


Author(s):  
Dongjun Yang ◽  
Wongyu Lee ◽  
Jehyeok Oh

Although the use of audio feedback with devices such as metronomes during cardiopulmonary resuscitation (CPR) is a simple method for improving CPR quality, its effect on the quality of pediatric CPR has not been adequately evaluated. In this study, 64 healthcare providers performed CPR (with one- and two-handed chest compression (OHCC and THCC, respectively)) on a pediatric resuscitation manikin (Resusci Junior QCPR), with and without audio feedback using a metronome (110 beats/min). CPR was performed on the floor, with a compression-to-ventilation ratio of 30:2. For both OHCC and THCC, the rate of achievement of an adequate compression rate during CPR was significantly higher when performed with metronome feedback than that without metronome feedback (CPR with vs. without feedback: 100.0% (99.0, 100.0) vs. 94.0% (69.0, 99.0), p < 0.001, for OHCC, and 100.0% (98.5, 100.0) vs. 91.0% (34.5, 98.5), p < 0.001, for THCC). However, the rate of achievement of adequate compression depth during the CPR performed was significantly higher without metronome feedback than that with metronome feedback (CPR with vs. without feedback: 95.0% (23.5, 99.5) vs. 98.5% (77.5, 100.0), p = 0.004, for OHCC, and 99.0% (95.5, 100.0) vs. 100.0% (99.0, 100.0), p = 0.003, for THCC). Although metronome feedback during pediatric CPR could increase the rate of achievement of adequate compression rates, it could cause decreased compression depth.


2020 ◽  

Objective: Clinical studies have shown that eliminating performer errors is important to ensure high quality cardiopulmonary resuscitation (CPR). Literature on the effects of metronome use on the quality of CPR is scarce. This study aimed to investigate the effect of metronome use on the quality of cardiopulmonary resuscitation. Methods: Thirty volunteer emergency physicians who were divided into 15 groups participated in this prospective, observational, multi-center, manikin study. Firstly, each participant performed conventional CPR on a manikin, and then performed metronome-guided CPR after a short break. Parameters affecting CPR quality were evaluated based on the recommendations of the 2015 American Heart Association CPR and Emergency Cardiovascular Care Guideline. In addition, the fatigue levels of participants were evaluated using the Borg Fatigue Index. Results: Metronome-guided CPR significantly improved the chest compression rate (median (Interquartile Range-IQR); 128 (22) compressions/min vs. 110 (2) compressions/min; 95%CI, p < 0.001), deep compression rate (median (IQR); 95.25 (80) compressions/min vs. 72.63 (105) compressions/min; 95%CI, p < 0.001), compression depth (median (IQR); 62.50 (11) mm vs. 60.25 (14) mm; 95%CI, p = 0.016), ventilation number (median (IQR); 11.25 (6) ventilations/min vs. 9.50 (1) ventilations/min; 95%CI, p = 0.001), high-volume ventilation count (median (IQR); 10.13 (6) ventilations/min vs. 9.50 (1) ventilations/min; 95%CI, p = 0.026), minute ventilation volume (median (IQR); 11.75 (10) L/min vs. 8.03 (3) L/min; 95%CI, p < 0.05), and fatigue levels (median (IQR); 3 (2) vs. 2 (2); in 95%CI, p < 0.05). Conclusions: Our study showed that metronome is a useful device for reaching effective CPR. Metronome guidance may change the CPR parameters positively. This study is in accordance with previous studies which have investigated the effect of metronome-guided CPR on survival.


2021 ◽  
Vol 92 (2) ◽  
pp. 106-112
Author(s):  
Sindujen Sriharan ◽  
Gemma Kay ◽  
Jimmy C.Y. Lee ◽  
Ross D. Pollock ◽  
Thais Russomano

BACKGROUND: Limited research exists into extraterrestrial CPR, despite the drive for interplanetary travel. This study investigated whether the terrestrial CPR method can provide quality external chest compressions (ECCs) in line with the 2015 UK resuscitation guidelines during ground-based hypogravity simulation. It also explored whether gender, weight, and fatigue influence CPR quality.METHODS: There were 21 subjects who performed continuous ECCs for 5 min during ground-based hypogravity simulations of Mars (0.38 G) and the Moon (0.16 G), with Earths gravity (1 G) as the control. Subjects were unloaded using a body suspension device (BSD). ECC depth and rate, heart rate (HR), ventilation (VE), oxygen uptake (Vo2), and Borg scores were measured.RESULTS: ECC depth was lower in 0.38 G (42.9 9 mm) and 0.16 G (40.8 9 mm) compared to 1 G and did not meet current resuscitation guidelines. ECC rate was adequate in all gravity conditions. There were no differences in ECC depth and rate when comparing gender or weight. ECC depth trend showed a decrease by min 5 in 0.38 G and by min 2 in 0.16 G. Increases in HR, VE, and Vo2 were observed from CPR min 1 to min 5.DISCUSSION: The terrestrial method of CPR provides a consistent ECC rate but does not provide adequate ECC depths in simulated hypogravities. The results suggest that a mixed-gender space crew of varying bodyweights may not influence ECC quality. Extraterrestrial-specific CPR guidelines are warranted. With a move to increasing ECC rate, permitting lower ECC depths and substituting rescuers after 1 min in lunar gravity and 4 min in Martian gravity is recommended.Sriharan S, Kay G, Lee JCY, Pollock RD, Russomano T. Cardiopulmonary resuscitation in hypogravity simulation. Aerosp Med Hum Perform. 2021; 92(2):106112.


1990 ◽  
Vol 68 (2) ◽  
pp. 554-560 ◽  
Author(s):  
J. M. Dean ◽  
R. C. Koehler ◽  
C. L. Schleien ◽  
I. Berkowitz ◽  
J. R. Michael ◽  
...  

The effects of various compression rate and duration combinations on chest geometry and cerebral perfusion pressure during cardiopulmonary resuscitation (CPR) were studied in immature swine. Pentobarbital-anesthetized 2- and 8-wk-old piglets received CPR after ventricular fibrillation. At compression rates of 40, 60, 80, 100, 120, and 150/min, duty cycle (compression duration/total cycle time) was increased from 10 to 80% by 10% increments. Mean aortic and sagittal sinus pressures, pulsatile displacement, and deformity of the anterior chest wall were measured. Increasing duty cycle increased cerebral perfusion pressure until chest relaxation time was compromised. Inadequate chest recoil, development of static chest deformation, and limitation of pulsatile chest wall movement occurred in both age groups when relaxation time was very short (150-200 ms in 2-wk-old piglets, 250-300 ms in 8-wk-old piglets). These changes in chest geometry correlated with deterioration of cerebral perfusion pressure only in 8-wk-old piglets. In the younger group, perfusion pressures plateaued but did not deteriorate. These data emphasize the importance of duty cycle in generating cerebral perfusion pressure and indicate that younger animals can tolerate high compression rates except at extremely long duty cycles.


2018 ◽  
Vol 53 (2) ◽  
pp. 122-127 ◽  
Author(s):  
Richard J. Boergers ◽  
Thomas G. Bowman ◽  
Monica R. Lininger

Context:  Performance of quality cardiopulmonary resuscitation is essential for improving patient outcomes. Performing compressions over football equipment inhibits compression depth and rate, but lacrosse equipment has not yet been studied. Objective:  To assess the effect of lacrosse shoulder pads on the ability to provide quality chest compressions on simulation manikins. Design:  Crossover study. Setting:  Simulation laboratory. Patients or Other Participants:  Thirty-six athletic trainers (12 men: age = 33.3 ± 9.7 years; 24 women: age = 33.4 ± 9.8 years). Main Outcome Measure(s):  No shoulder pads (NSP), Warrior Burn Hitman shoulder pads (WSP), and STX Cell II shoulder pads (SSP) were investigated. Outcomes were chest-compression depth (millimeters), rate (compressions per minute), rating of perceived exertion (0−10), hand-placement accuracy (%), and chest recoil (%). Results:  We observed a difference in mean compression depth among shoulder-pad conditions (F2,213 = 3.73, P = .03, ω2 = 0.03), with a shallower depth during the WSP (54.1 ± 5.8 mm) than the NSP (56.8 ± 5.7 mm; P = .02) trials. However, no differences were found in mean compression rate (F2,213 = 0.87, P = .42, ω2 = 0.001, 1–β = .20). We noted a difference in rating of perceived exertion scores (F2,213 = 16.41, P &lt; .001, ω2 = 0.12). Compressions were more difficult during the SSP condition (4.1 ± 1.3) than during the NSP (2.9 ± 1.2; P &lt; .001) and WSP (3.3 ± 1.1; P = .002) conditions. A difference was present in hand-placement accuracy among the 3 shoulder-pad conditions (χ22 = 11.14, P = .004). Hand-placement accuracy was better in the NSP than the SSP condition (P = .002) and the SSP than the WSP condition (P = .001). Conclusions:  Lacrosse shoulder pads did not inhibit the ability to administer chest compressions with adequate rate and depth. With appropriate training to improve hand placement, the pads may be left in place while cardiopulmonary resuscitation is initiated during sudden cardiac arrest.


2020 ◽  
Vol 14 (2) ◽  
Author(s):  
Lhoucine Ben Taleb ◽  
Elmaati Essoukaki ◽  
Azeddine Mouhsen ◽  
Aissam Lyazidi ◽  
Abdelhadi Assir ◽  
...  

Abstract Several studies have shown that chest compressions (CC) alone may produce in addition to blood circulation, a short-term passive ventilation. However, it is not clear whether high CC quality may produce in even greater amount of ventilation volumes. The aim of this study was to evaluate whether CC, using a new feedback device, can produce a substantial and sustainable passive volumes compared to standard CC. Thirty inexperienced volunteers performed CC for 2 min on a developed thoracic lung model and using a new feedback device. Participants were randomized into two groups that performed either CC with feedback first, followed by a trial without feedback, or vice versa. Efficient compression rate (correct CC rate and depth simultaneously) was significantly higher in feedback session (43.6% versus 25.5%; P = 0.006). As well, CC rate and depth efficiency were improved with feedback. Moreover, average tidal volumes and minute volumes that occurred during CC alone were significantly improved in feedback session (79.8 ± 5 ml versus 72.9 ± 7 ml) and (8.8 l/min versus 7.9 l/min), respectively (P &lt; 0.001). Yet, no significant difference was found between the first and the 90th second interval (9.04 l/min versus 8.68 l/min, P = 0.163) in the feedback session. Conversely, a significant difference was evident after the first 15th seconds interval without feedback (8.77 l/min initially versus 8.38 l/min; P = 0.041). This study revealed that the new CPR feedback device improved CC quality in inexperienced volunteers. As well, the passive ventilation volumes were significantly increased and sustained when the device was used.


Author(s):  
Debora Almeida ◽  
Carol Clark ◽  
Michael Jones ◽  
Phillip McConnell ◽  
Jonathan Williams

Abstract Background Positive outcomes from infant cardiac arrest depend on the effective delivery of resuscitation techniques, including good quality infant cardiopulmonary resuscitation (iCPR) However, it has been established that iCPR skills decay within weeks or months after training. It is not known if the change in performance should be considered true change or inconsistent performance. The aim of this study was to investigate consistency and variability in human performance during iCPR. Methods An experimental, prospective, observational study conducted within a university setting with 27 healthcare students (mean (SD) age 32.6 (11.6) years, 74.1% female). On completion of paediatric basic life support (BLS) training, participants performed three trials of 2-min iCPR on a modified infant manikin on two occasions (immediately after training and after 1 week), where performance data were captured. Main outcome measures were within-day and between-day repeated measures reliability estimates, determined using Intraclass Correlation Coefficients (ICCs), Standard Error of Measurement (SEM) and Minimal Detectable Change (MDC95%) for chest compression rate, chest compression depth, residual leaning and duty cycle along with the conversion of these into quality indices according to international guidelines. Results A high degree of reliability was found for within-day and between-day for each variable with good to excellent ICCs and narrow confidence intervals. SEM values were low, demonstrating excellent consistency in repeated performance. Within-day MDC values were low for chest compression depth and chest compression rate (6 and 9%) and higher for duty cycle (15%) and residual leaning (22%). Between-day MDC values were low for chest compression depth and chest compression rate (3 and 7%) and higher for duty cycle (21%) and residual leaning (22%). Reliability reduced when metrics were transformed in quality indices. Conclusion iCPR skills are highly repeatable and consistent, demonstrating that changes in performance after training can be considered skill decay. However, when the metrics are transformed in quality indices, large changes are required to be confident of real change.


Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Emily Stumpf ◽  
Ravi Ambati ◽  
Raj Shekhar ◽  
Steven Staffa ◽  
David Zurakowski ◽  
...  

Introduction: Quality of cardiopulmonary resuscitation (CPR) contributes significantly to morbidity and mortality in both in-hospital and out-of-hospital cardiac arrest. Key parameters that determine the CPR quality are compression rate, compression depth, duration of interruptions, chest recoil factor and respiratory rate. Several studies have demonstrated that real-time audiovisual feedback improves CPR quality in both bystanders and hospital staff. This study aims to develop and validate a smart device (phones and wearable technology) application to provide real-time audiovisual and haptic feedback to optimize CPR quality, by calculating aforementioned chest compression parameters. Hypothesis: A mobile application using acceleration sensor data from smart devices can provide accurate real time CPR quality feedback. Methods: A mobile application was developed to track the compression depth, compression rate and pause duration in real time using the data captured from the on-device accelerometer. The mobile device was placed on an adult manikin’s chest along the midline close to the point of compressions. Data from the application was compared directly to data obtained from a validated clinical standard CPR quality tool. Results: CPR quality parameters were obtained from the app and the standard for 60, 10-second-long sessions. Bland-Altman plot analysis for compression depth showed agreement between the app measurements and standard within +/-3.5mm (Figure 1). The intraclass correlation for agreement in the measurement of compression count was 0.92 (95% CI: 0.88-0.95), indicative of very strong agreement. Conclusions: Smart device (phones and wearable technology) applications using acceleration sensor data can accurately provide real-time CPR quality feedback. With further development and validation they can provide a ubiquitous CPR feedback tool valuable for out of hospital arrests and in under-privileged areas worldwide.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Thomas Rea ◽  
Bryce Johnson ◽  
Jason Coult ◽  
Carol Fahrenbruch ◽  
Jennifer Blackwood ◽  
...  

Background: CPR duty cycle is the portion of time spent in compression relative to the total time of the compression-decompression cycle. Guidelines recommend a 50% duty cycle based largely on animal investigation. Little is known about duty cycle in human resuscitation and whether duty cycle correlates with other CPR measures. Methods: We calculated the duty cycle, compression depth, and compression rate during EMS resuscitation of 164 patients with out-of-hospital ventricular fibrillation cardiac arrest. We captured force recordings from a chest accelerometer to measure ten-second CPR epochs that immediately preceded each scheduled rhythm analysis. Duty cycle was calculated using two methods. The effective compression time (ECT) is the time from beginning to end of compression divided by total period for that compression-decompression cycle. The area duty cycle (ADC) is the ratio of area under the force curve divided by total area of one compression-decompression cycle. We evaluated the compression depth and compression rate according to duty cycle quartiles. Results: There were 369 ten-second epochs among 164 patients. The median duty cycle was 38.8% (SD=5.5%) using ECT and 32.2% (SD=4.3%) using ADC. A relatively shorter compression phase (lower duty cycle) was associated with greater compression depth (test for trend < 0.05 for ECT and ADC) and slower compression rate (test for trend < 0.05 for ADC) (Table). Sixty-one patients (37%) survived to hospital discharge. Conclusions: In this system with high survival, duty cycle was well below the 50% recommended guideline, and was associated with compression depth and rate. These findings provide rationale to incorporate duty cycle into future research to evaluate how CPR influences resuscitation.


Sign in / Sign up

Export Citation Format

Share Document