Abstract 15290: 4D-flow MRI Intracardiac Flow Hemodynamic Patterns Can Phenotype Different Subtypes of Pulmonary Hypertension

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Lexie K Ross ◽  
Alex J Barker ◽  
Benjamin S Frank ◽  
Kendall S Hunter ◽  
Gareth Morgan ◽  
...  

Introduction: Idiopathic Pulmonary Arterial Hypertension (PH-Type I) and PH due to pulmonary disease (PH-Type III) arise from different pathophysiologic processes, yet they both culminate in increased right ventricular (RV) afterload and eventual RV failure. Previous work has demonstrated that 4D-Flow MRI-derived intracardiac vorticity (ω) correlates with markers of ventricular interdependency and diastolic dysfunction in PH. However, no investigation has attempted to use both ω and standard markers of ventricular function to phenotype PH subgroups. Hypothesis: 4D-Flow MRI can detect differences in diastolic dysfunction that make it possible to phenotype patients with Type I and Type III PH. Methods: Type I PH patients (n=12, mean age 61yrs), Type III PH patients (n=15, mean age 63yrs), and healthy controls (n=10, mean age 58yrs) underwent standard cardiac MRI as well as 4D-Flow MRI to determine RV intracardiac flow markers including early (ω-E) and late (ω-A) diastolic vorticity. Standard MRI-based RV and LV size and function markers were also collected. Results: ω-E was decreased in the Type I PH group compared to the Type III PH group (P=0.035) and to controls (P<0.001). There was no difference in ω-E between the Type III group and controls (P=0.216). RVEF was decreased in both the Type I (P<0.001) and Type III (P=0.012) group compared to controls. There was no difference in RVEF between the Type I and Type III groups (P=0.917). RVEDV was increased in both the Type I (P=0.008) and Type III (P=0.006) groups compared to controls. No significant differences were noted between groups when assessing (ω-A) and other RV or LV standard volume and functional indices. Conclusion: Our results indicate that 4D-Flow MRI can distinguish among different PH subtypes using intracardiac diastolic vorticity. Comparative studies with standard echocardiography and catheterization are necessary to assess the sensitivity of 4D-Flow MRI to detect diastolic dysfunction.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Ani Oganesyan ◽  
Alex J Barker ◽  
Benjamin S Frank ◽  
Dunbar D IVY ◽  
Lorna Browne ◽  
...  

Introduction: Cor Pulmonale or right ventricular (RV) dysfunction due to pulmonary disease is an expected complication of COPD resulting from increased afterload mediated by hypoxic pulmonary vasoconstriction as well as the destruction of the pulmonary vascular bed. Early detection of elevated RV afterload has been previously demonstrated by visualization of abnormal flow patterns in the proximal pulmonary arteries. Prior quantitative analysis of helicity in the pulmonary arteries of pulmonary hypertension patients has demonstrated a strong association between helicity and increased RV afterload. Hypothesis: Patients with COPD will have abnormal pulmonary flow as evaluated by 4D-Flow MRI and associated with RV function and pulmonary arterial stiffness. Methods: Patients with COPD (n=15) (65yrs ± 6) and controls (n=10) (58yrs ± 9) underwent 4D-Flow MRI to calculate helicity (Figure 1A). The helicity was calculated in 2 segments: 1) the main pulmonary artery (MPA) and 2) along the RV outflow tract (RVOT) - MPA axis. Main pulmonary arterial stiffness was measured using the relative area change (RAC). Results: COPD patients had decreased helicity relative to healthy controls in the MPA (19.4±7.8 vs 32.8±15.9 s -2 , P=0.007) (Figure 1B). Additionally, COPD patients had reduced helicity along the RVOT-MPA axis (33.2±9.0 vs 43.5±8.3 s -2 , P=0.010). The helicity measured in the MPA was associated with RV end-systolic volume (R=0.59, P = 0.002), RVEF (R=0.631, P<0.001), RAC (R=-0.61, P=0.001). e combined helicity along the MPA-RVOT axis was associated with RVEF (R=0.74, P<0.001), RVESV (R=-0.57, P=0.004), and RAC (R=0.42, P=0.005). Conclusion: Patients with COPD show quantitatively abnormal flow hemodynamics, when compared with healthy controls, as assessed by 4D-Flow MRI. A strong association between helicity along the MPA-RV outflow tract axis and RV function suggests that 4D-Flow MRI might be a sensitive tool in evaluating RV - pulmonary arterial coupling in COPD.


Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Ali Nahardani ◽  
Simon Leistikow ◽  
Katja Grün ◽  
Martin Krämer ◽  
Karl-Heinz Herrmann ◽  
...  

(1) Background: Pulmonary arterial hypertension (PAH) is a serious condition that is associated with many cardiopulmonary diseases. Invasive right heart catheterization (RHC) is currently the only method for the definitive diagnosis and follow-up of PAH. In this study, we sought a non-invasive hemodynamic biomarker for the diagnosis of PAH. (2) Methods: We applied prospectively respiratory and cardiac gated 4D-flow MRI at a 9.4T preclinical scanner on three different groups of Sprague Dawley rats: baseline (n = 11), moderate PAH (n = 8), and severe PAH (n = 8). The pressure gradients as well as the velocity values were analyzed from 4D-flow data and correlated with lung histology. (3) Results: The pressure gradient between the pulmonary artery and vein on the unilateral side as well as the time-averaged mean velocity values of the small pulmonary arteries were capable of distinguishing not only between baseline and severe PAH, but also between the moderate and severe stages of the disease. (4) Conclusions: The current preclinical study suggests the pulmonary arteriovenous pressure gradient and the time-averaged mean velocity as potential biomarkers to diagnose PAH.


2017 ◽  
Vol 65 (S 02) ◽  
pp. S111-S142
Author(s):  
A. Lehner ◽  
S. Ulrich ◽  
R. Dalla-Pozza ◽  
M. Fischer ◽  
N.A. Haas ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0138365 ◽  
Author(s):  
Q. Joyce Han ◽  
Walter R. T. Witschey ◽  
Christopher M. Fang-Yen ◽  
Jeffrey S. Arkles ◽  
Alex J. Barker ◽  
...  

Radiology ◽  
2018 ◽  
Vol 289 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Jonas Lantz ◽  
Vikas Gupta ◽  
Lilian Henriksson ◽  
Matts Karlsson ◽  
Anders Persson ◽  
...  
Keyword(s):  
4D Flow ◽  
4D Ct ◽  
Flow Mri ◽  

2020 ◽  
Vol 32 (1) ◽  
pp. 35
Author(s):  
Pietro Sergio ◽  
Antonio Miceli
Keyword(s):  
4D Flow ◽  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nanae Tsuchiya ◽  
Michinobu Nagao ◽  
Yumi Shiina ◽  
Shohei Miyazaki ◽  
Kei Inai ◽  
...  

AbstractWe used 4D-flow MRI to investigate circulation, an area integral of vorticity, in the main pulmonary artery (MPA) as a new hemodynamic parameter for assessing patients with a repaired Tetralogy of Fallot (TOF). We evaluated the relationship between circulation, right ventricular (RV) function and the pulmonary regurgitant fraction (PRF). Twenty patients with a repaired TOF underwent cardiac MRI. Flow-sensitive 3D-gradient sequences were used to obtain 4D-flow images. Vortex formation in the MPA was visualized, with short-axis and longitudinal vorticities calculated by software specialized for 4D flow. The RV indexed end-diastolic/end-systolic volumes (RVEDVi/RVESVi) and RV ejection fraction (RVEF) were measured by cine MRI. The PR fraction (PRF) and MPA area were measured by 2D phase-contrast MRI. Spearman ρ values were determined to assess the relationships between circulation, RV function, and PRF. Vortex formation in the MPA occurred in 15 of 20 patients (75%). The longitudinal circulation (11.7 ± 5.1 m2/s) was correlated with the RVEF (ρ = − 0.85, p = 0.0002), RVEDVi (ρ = 0.62, p = 0.03), and RVESVi (ρ = 0.76, p = 0.003) after adjusting for the MPA size. The short-axis circulation (9.4 ± 3.4 m2/s) in the proximal MPA was positively correlated with the MPA area (ρ = 0.61, p = 0.004). The relationships between the PRF and circulation or RV function were not significant. Increased longitudinal circulation in the MPA, as demonstrated by circulation analysis using 4D flow MRI, was related to RV dysfunction in patients with a repaired TOF.


2021 ◽  
pp. svn-2020-000636
Author(s):  
Miaoqi Zhang ◽  
Fei Peng ◽  
Xin Tong ◽  
Xin Feng ◽  
Yunduo Li ◽  
...  

Background and purposePrevious studies have reported about inflammation processes (IPs) that play important roles in aneurysm formation and rupture, which could be driven by blood flow. IPs can be identified using aneurysmal wall enhancement (AWE) on high-resolution black-blood MRI (BB-MRI) and blood flow haemodynamics can be demonstrated by four-dimensional-flow MRI (4D-flow MRI). Thus, this study investigated the associations between AWE and haemodynamics in unruptured intracranial aneurysms (IA) by combining 4D-flow MRI and high-resolution BB-MRI.Materials and methodsBetween April 2014 and October 2017, 48 patients with 49 unruptured IA who underwent both 4D-flow MRI and high-resolution BB-MRI were retrospectively included in this study. The haemodynamic parameters demonstrated using 4D-flow MRI were compared between different AWE patterns using the Kruskal-Wallis test and ordinal regression.ResultsThe results of Kruskal-Wallis test showed that the average wall shear stress in the IA (WSSavg-IA), maximum through-plane velocity in the adjacent parent artery, inflow jet patterns and the average vorticity in IA (vorticityavg-IA) were significantly associated with the AWE patterns. Ordinal regression analysis identified WSSavg-IA (p=0.002) and vorticityavg-IA (p=0.033) as independent predictors of AWE patterns.ConclusionA low WSS and low average vorticity were independently associated with a high AWE grade for IAs larger than 4 mm. Therefore, WSS and average vorticity could predict AWE and circumferential AWE.


Sign in / Sign up

Export Citation Format

Share Document