Abstract 101: Cardiac Deleterious Role of Galectin-3 in Chronic Angiotensin-II Induced Hypertension

Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Germán E González ◽  
Nour-Eddine Rhaleb ◽  
Xiao- P Yang ◽  
Oscar A Carretero

We previously described that chronic infusion with Angiotensin II (Ang II) increases cardiac Galectin-3 (Gal-3) expression, a carbohydrate-binding lectin present on macrophages. Also, Gal-3 was proposed to be a powerful predictor for mortality in patients with heart failure. Nevertheless, the role of Gal-3 in the pathogenesis of end organ damage (EOD) in hypertension is unknown. Here, we hypothesized that in Ang II-induced hypertension, genetic deletion of Gal-3 prevents innate immunity, EOD, and left ventricular (LV) dysfunction. Male C57 and Gal-3 KO mice were infused with vehicle (V) or Ang II (90 ng/min; s.c.) for 8 weeks and divided into: 1) C57 + V; 2) Gal-3 KO + V; 3) C57 + Ang II and 4) Gal-3 KO + Ang II. Systolic blood pressure (SBP) was measured by plestimography weekly. At 8 week, we evaluated 1) LV ejection fraction (EF) by echocardiography; 2) cardiac hypertrophy by LV weight/tibia length; 3) cardiac fibrosis by picrosirius red staining; 4) infiltrated macrophages by CD68+ staining; 5) ICAM-1 protein expression by Western blot; and 6) serum interleukin (IL)-6 by ELISA. We found that despite a similar increase in SBP and LV hypertrophy in both strains on Ang II, Gal-3 KO mice had better reserved EF and decreased inflammatory and fibrotic responses (see Table). Results: (MEAN ± SEM at 8 w) *p<0.05 C57+Ang II and Gal-3 KO+Ang II vs C57+V; ‡ p<0.05 Gal-3 KO+Ang II vs C57+Ang II. Conclusion: In Ang II-induced hypertension, deletion of Gal-3 prevents EOD and LV systolic dysfunction without altering blood pressure and LV hypertrophy. This study indicates that the deleterious effects of Ang II could be in part mediated by Gal-3, which enhanced inflammation and fibrosis.

2019 ◽  
Vol 51 (4) ◽  
pp. 97-108 ◽  
Author(s):  
Xiao C. Li ◽  
Xiaowen Zheng ◽  
Xu Chen ◽  
Chunling Zhao ◽  
Dongmin Zhu ◽  
...  

The sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) and sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) are two of the most important Na+ transporters in the proximal tubules of the kidney. On the apical membrane side, NHE3 primarily mediates the entry of Na+ into and the exit of H+ from the proximal tubules, directly and indirectly being responsible for reabsorbing ~50% of filtered Na+ in the proximal tubules of the kidney. On the basolateral membrane side, Na+/K+-ATPase serves as a powerful engine driving Na+ out of, while pumping K+ into the proximal tubules against their concentration gradients. While the roles of NHE3 and Na+/K+-ATPase in proximal tubular Na+ transport under in vitro conditions are well recognized, their respective contributions to the basal blood pressure regulation and angiotensin II (ANG II)-induced hypertension remain poorly understood. Recently, we have been fortunate to be able to use genetically modified mouse models with global, kidney- or proximal tubule-specific deletion of NHE3 to directly determine the cause and effect relationship between NHE3, basal blood pressure homeostasis, and ANG II-induced hypertension at the whole body, kidney and/or proximal tubule levels. The purpose of this article is to review the genetic and genomic evidence for an important role of NHE3 with a focus in the regulation of basal blood pressure and ANG II-induced hypertension, as we learned from studies using global, kidney- or proximal tubule-specific NHE3 knockout mice. We hypothesize that NHE3 in the proximal tubules is necessary for maintaining basal blood pressure homeostasis and the development of ANG II-induced hypertension.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Ryuji Okamoto ◽  
Kensuke Noma ◽  
Naoki Sawada ◽  
Yukio Hiroi ◽  
Ping-Yen Liu ◽  
...  

Background - Previous studies have shown that Rho kinase (ROCK) inhibitors prevent the development of cardiac hypertrophy. Because ROCK inhibitors inhibit both ROCK isoforms, ROCK1 and ROCK2, the isoform-specific role of ROCK cannot be elucidated from these studies. Hence, a genetic approach with targeted deletion of ROCK in cardiomyocytes provides the best opportunity towards understanding the role of ROCK isoforms in the development of cardiac hypertrophy. Previous studies showed that ROCK1 KO mice develop cardiac hypertrophy to angiotensin II infusion similar to WT mice, but do not develop cardiac fibrosis. However, the role of ROCK2 in the development of cardiac hypertrophy remains to be determined. Methods and Results - Mice deficient in cardiomyocyte-specific ROCK2 (c-ROCK2 −/− ) were generated by crossing mice with loxP-flanked ROCK2 allele with transgenic mice expressing a Cre protein under the control of the cardiomyocyte-specific alpha-myosin heavy chain promoter. The ROCK2 expression levels in the c-ROCK2 −/− mice heart was decreased to less than 30% compared with wild-type mice (ROCK2 +/+ mice) in the whole heart. Heart rate, blood pressures and cardiac systolic function were normal in c-ROCK2 −/− mice. Ang II (400ng/kg/min) or vehicle was subcutaneously infused into c-ROCK2 −/− and ROCK2 +/+ male mice (each group; n=10) for 28 days. Ang II-induced cardiac hypertrophy assessed by an increase in heart weight, left ventricular mass, myocyte cross-sectional area and cardiac hypertrophy-related genes expressions were attenuated in c-ROCK2 −/− mice compared with ROCK2 +/+ mice. The basal activity of extracellular signal-regulated kinase (ERK) were similar in hearts between two groups but the activation of ERK was attenuated and the activity was downregulated earlier in c-ROCK2 −/− than in ROCK2 +/+ mice. The activity of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and Akt activity were similar between two groups. Conclusions - These results indicate that ROCK2 is necessary for Ang II-induced cardiac hypertrophy. The mechanism, in part, involves the activation of ERK by ROCK2. Thus, selective ROCK2 inhibitors may be beneficial for preventing cardiac hypertrophy.


2016 ◽  
Vol 311 (5) ◽  
pp. H1287-H1296 ◽  
Author(s):  
Germán E. González ◽  
N.-E. Rhaleb ◽  
Martin A. D'Ambrosio ◽  
Pablo Nakagawa ◽  
Tang-Dong Liao ◽  
...  

Galectin-3 (Gal-3), a member of the β-galactoside lectin family, has an important role in immune regulation. In hypertensive rats and heart failure patients, Gal-3 is considered a marker for an unfavorable prognosis. Nevertheless, the role and mechanism of Gal-3 action in hypertension-induced target organ damage are unknown. We hypothesized that, in angiotensin II (ANG II)-induced hypertension, genetic deletion of Gal-3 prevents left ventricular (LV) adverse remodeling and LV dysfunction by reducing the innate immune responses and myocardial fibrosis. To induce hypertension, male C57BL/6J and Gal-3 knockout (KO) mice were infused with ANG II (3 μg·min−1·kg−1 sc) for 8 wk. We assessed: 1) systolic blood pressure by plethysmography, 2) LV function and remodeling by echocardiography, 3) myocardial fibrosis by histology, 4) cardiac CD68+ macrophage infiltration by histology, 5) ICAM-1 and VCAM-1 expression by Western blotting, 6) plasma cytokines, including interleukin-6 (IL-6), by enzyme-linked immunosorbent assay, and 7) regulatory T (Treg) cells by flow cytometry as detected by their combined expression of CD4, CD25, and FOXP3. Systolic blood pressure and cardiac hypertrophy increased similarly in both mouse strains when infused with ANG II. However, hypertensive C57BL/6J mice suffered impaired ejection and shortening fractions. In these mice, the extent of myocardial fibrosis and macrophage infiltration was greater in histological sections, and cardiac ICAM-1, as well as plasma IL-6, expression was higher as assessed by Western blotting. However, all these parameters were blunted in Gal-3 KO mice. Hypertensive Gal-3 KO mice also had a higher number of splenic Treg lymphocytes. In conclusion, in ANG II-induced hypertension, genetic deletion of Gal-3 prevented LV dysfunction without affecting blood pressure or LV hypertrophy. This study indicates that the ANG II effects are, in part, mediated or triggered by Gal-3 together with the related intercellular signaling (ICAM-1 and IL-6), leading to cardiac inflammation and fibrosis.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Daniel J Fehrenbach ◽  
Meena S Madhur

Hypertension, or an elevated blood pressure, is the primary modifiable risk factor for cardiovascular disease, the number one cause of mortality worldwide. We previously demonstrated that Th17 activation and interleukin 17A (IL-17A)/IL-21 production is integral for the full development of a hypertensive phenotype as well as the renal and vascular damage associated with hypertension. Rho-associated coiled-coil containing protein Kinase 2 (ROCK2) serves as a molecular switch upregulating Th17 and inhibiting regulatory T cell (Treg) differentiation. We hypothesize that hypertension is characterized by excessive T cell ROCK2 activation leading to increased Th17/Treg ratios and ultimately end-organ damage. We first showed in vitro that KD025, an experimental orally bioavailable ROCK2 inhibitor inhibits Th17 cell proliferation and IL-17A/IL-21 production. To determine if hypertensive stimuli such as endothelial stretch increases T cell ROCK2 expression, we cultured human aortic endothelial cells exposed to 5% (normotensive) or 10% (hypertensive) stretch with circulating human T cells and HLA-DR+ antigen presenting cells. Hypertensive stretch increased T cell ROCK2 expression 2-fold. We then tested the effect of ROCK2 inhibition with KD025 (50mg/kg i.p. daily) in vivo on angiotensin II (Ang II)-induced hypertension. Treatment with KD025 significantly attenuated the hypertensive response within 1 week of Ang II treatment (systolic blood pressure: 139± 8 vs 108±7mmHg) and this persisted for the duration of the 4 week study reaching blood pressures 20 mmHg lower (135±13mmHg) than vehicle treated mice (158±4mmHg p<0.05 effect of treatment 2-way Repeated Measures ANOVA). Flow cytometric analysis of tissue infiltrating leukocytes revealed that KD025 treatment increased Treg/Th17 ratios in the kidney (0.61±0.03 vs 0.79±0.08, p<0.05 student’s t-test). Thus, T cell ROCK2 may be a novel therapeutic target for the treatment of hypertension.


Author(s):  
Marzieh Kafami ◽  
Mahmoud Hosseini ◽  
Saeed Niazmand ◽  
Esmaeil Farrokhi ◽  
Mosa Al-Reza Hajzadeh ◽  
...  

Abstract Background Although numerous studies have proven that estrogen (Est) has a protective effect on the development of hypertension, more research needs to be done to show its detailed mechanism in a variety of hypertension. The important role of active oxygen species in blood pressure is well defined. We examined whether or not sex hormones change the growth of reactive oxygen species (ROS) ‎in kidneys after central microinjection of angiotensin II (Ang II).‎ Materials and methods Female Wistar rats, 8 weeks old (200 ± 10 g) were used in this study. The animal groups were (1) Sham, (2) Ovariectomy (OVX), (3) Sham-Hypertension (Sham-Hyper), (4) OVX-Hypertension (OVX-Hyper), (5) Sham-Hyper-Est, (6) OVX-Hyper-Est‎;‎ (7) Sham-Hyper-Testosterone (Tst) and (8) OVX-Hyper-Tst. Solutions of 1% NaCl and 0.1 KCl ‎were used and desoxycorticostrone (doca-salt) was injected (45 mg/kg) 3 times a week in Hypertension groups. Estradiol and Tst (2 mg/kg and ‎5 mg/kg‎; daily; subcutaneously) for 4 weeks. Ang II (50 μM, 5 μL) was microinjected by intracerebroventricular ( i.c.v.) infusion and malondialdehyde (MDA) and thiol in the kidneys were measured. Results MDA in the kidneys was increased by Ang II and doca-salt treatments. Both estradiol and Tst decreased the kidney’s MDA. The level of thiol was higher in Hyper ‎groups and reversed after treatment with estradiol and Tst. Conclusions Our findings suggest that central effect of Ang II on blood pressure and kidney ‎disease is accompanied with increased levels of oxidative stress in the kidneys. Indeed sex hormones change the ROS level in the kidneys after central ‎microinjection of Ang II.‎‎


Author(s):  
Xiao Chun Li ◽  
Ana Paula Oliveira Leite ◽  
Xiaowen Zheng ◽  
Chunling Zhao ◽  
Xu Chen ◽  
...  

The present study used a novel mouse model with proximal tubule-specific knockout of AT 1a receptors in the kidney, PT- Agtr1a −/− , to test the hypothesis that intratubular Ang II (angiotensin II) and AT 1a receptors in the proximal tubules are required for maintaining normal blood pressure and the development of Ang II–induced hypertension. Twenty-six groups (n=6–15 per group) of adult male wild-type, global Agtr1a −/− , and PT- Agtr1a −/− mice were infused with Ang II (1.5 mg/kg per day, IP), or overexpressed an intracellular Ang II fusion protein in the proximal tubules for 2 weeks. Basal telemetry blood pressure were ≈15±3 mm Hg lower in PT- Agtr1a −/− than wild-type mice and ≈13±3 mm Hg higher than Agtr1a −/− mice ( P <0.01). Basal glomerular filtration was ≈23.9% higher ( P <0.01), whereas fractional proximal tubule Na + reabsorption was lower in PT- Agtr1a −/− mice ( P <0.01). Deletion of AT 1a receptors in the proximal tubules augmented the pressure-natriuresis response ( P <0.01) and natriuretic responses to salt loading or Ang III infusion ( P <0.01). Ang II induced hypertension in wild-type, PT- Agtr1a −/− and PT- Nhe3 −/− mice, but the pressor response was ≈16±2 mm Hg lower in PT- Agtr1a −/− and PT- Nhe3 −/− mice ( P <0.01). Deletion of AT 1a receptors or NHE3 (Na + /H + exchanger 3) in the proximal tubules attenuated ≈50% of Ang II–induced hypertension in wild-type mice ( P <0.01), but blocked intracellular Ang II fusion protein-induced hypertension in PT- Agtr1a −/− mice ( P <0.01). Taken together, the results of the present study provide new insights into the critical role of intratubular Ang II/AT 1 (AT 1a )/NHE3 pathways in the proximal tubules in normal blood pressure control and the development of Ang II–induced hypertension.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Shetal H Padia ◽  
Nancy L Howell ◽  
Brandon A Kemp ◽  
John J Gildea ◽  
Susanna R Keller ◽  
...  

A major proposed mechanism for the initiation of hypertension involves a primary increase in renal tubular sodium (Na+) reabsorption. Activation of intrarenal angiotensin type-2 receptors (AT2R) increases Na+ excretion; however, the role of intrarenal angiotensin type-2 receptors (AT2R) in the development of hypertension is unknown. Sprague-Dawley rats (N=36) underwent uninephrectomy and telemetric blood pressure probe implantation. Following a 72h recovery, two osmotic minipumps were inserted in each rat, one for chronic systemic delivery of 5% dextrose in water (D5W) or angiotensin II (Ang II, 200 ng/kg/min), and one for chronic intrarenal delivery of D5W (0.25 μL/h x 7d), highly selective AT2R agonist Compound 21 (C-21; 60 ng/kg/min x 7d), or specific AT2R antagonist PD-1223319 (PD; 10 ng/kg/min x 7d). Five groups of rats were studied: Group 1 (Control; N=10): systemic D5W + intrarenal D5W; Group 2 (Ang II-induced hypertension; N=8): systemic Ang II + intrarenal D5W; Group 3 (N=6): systemic Ang II + intrarenal C-21; Group 4 (N=6): systemic Ang II + 48h lead-in intrarenal C-21; Group 5 (N=6): systemic Ang II + intrarenal PD. Systemic Ang II infusion increased mean systolic blood pressure from 126±5 to 190±3 mm Hg over a 7d period in Group 2 (ANOVA F=73; P<1 X 10-6). Intrarenal administration of AT2R agonist C-21 (Groups 3 and 4) markedly inhibited the pressor effect of systemic Ang II (P<0.0001). Intrarenal AT2R antagonist PD (Group 5) augmented the pressor action of Ang II (P<0.0001). Consecutive 24h urinary Na+ excretion (UNaV) was reduced from 0.95±0.04 to 0.34±0.07 μmol/min (P<0.0001) on day 1 of Ang II infusion; Ang II-induced antinatriuresis was inhibited by intrarenal C-21 (P<0.0001) and augmented by intrarenal PD (P<0.0001) during the entire 7d infusion, demonstrating that one of the mechanisms to prevent Ang II-induced hypertension during intrarenal AT2R activation is the abolition of the initial increase in Na+ reabsorption that triggers the hypertensive cascade in this model. Thus, renal AT2Rs represent a novel therapeutic target for the prevention of hypertension.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Kristy Jackson ◽  
Jaideep Singh ◽  
Yen Zhi Ng ◽  
Cheng Peng ◽  
Anida Velagic ◽  
...  

Introduction: We have previously demonstrated that the naturally-occurring anti-inflammatory and pro-resolving protein Annexin-A1 (Anx-A1) limits the acute inflammatory response post myocardial infarction, but its impact on chronic inflammation, such as hypertension, has not been explored. This study aims to investigate the role of Anx-A1 in a preclinical model of hypertension, induced by angiotensin-II (Ang-II). Methods: 15-week-old male C57BL/6 or ANXA1 -/- were anesthetized (isoflurane, 2-4% v/v) and implanted with an osmotic minipump randomly assigned to receive Ang-II (0.7mg/kg/day) or vehicle (saline). Radiotelemetry recordings of blood pressure were taken at 10 intermittent timepoints from baseline to the end of the 29-day infusion period. Animals were euthanized with pentobarbitone (100mg/kg; i.p.) at endpoint and organ weights recorded and normalized to bodyweight. Left ventricle (LV) samples were stained with picrosirius red to assess total LV collagen deposition. Results: Ang II-induced mice at the end of the study had elevated mean arterial pressure (MAP), cardiac hypertrophy and fibrosis compared to normotensive mice (Table). Anx-A1 deficient mice given Ang II had an even greater increase in MAP and cardiac remodeling compared to WT. Interestingly, MAP of Anx-A1 deficient mice at baseline is significantly higher compare to C57BL/6 counterparts (Table). Conclusion: This is the first study to demonstrate that deficiency of Anx-A1 exaggerates cardiac remodeling in AngII-induced hypertension, suggesting that endogenous Anx-A1 might play previously unappreciated physiological role in regulating blood pressure. This supports the development of Anx-A1 based pharmacotherapy against hypertension-induced cardiac damage.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Quaisar Ali ◽  
Yonnie Wu ◽  
Tadashi Inagami ◽  
Tahir Hussain

Angiotensin II acting via Angiotensin II type 2 receptors (AT2Rs) is believed to be protective against blood pressure increase and affects renal function under pathophysiological condition. Recently we have observed that stimulation of AT2Rs in male obese Zucker rats has shifted the two opposing arms of renin angiotensin system (RAS) i.e. ACE-Ang II-AT1 vs ACE2/Ang-(1-7)-Mas. Evidence suggests that estrogen regulates RAS, including AT2R in female mice. We hypothesized that AT2R has a gender specific regulation of RAS. In the present study, we investigated the role of AT2Rs in regulating RAS components in male and female mice. Kidney cortex from AT2R knockout (AT2RKO) male and female mice and wild type (WT) with similar background (C57BL/6) of 20 weeks of age were used in the study. The cortical ACE expression (ng ACE/μg tissue) was significantly increased in AT2RKO mice (3±0.02) compared to WT males (1.9±0.02). LC/MS analysis of cortical tissue revealed that Ang II was also significantly increased in AT2RKO mice (WT: 31±3, AT2RKO: 47±3 fmoles/mg tissue). Deletion of AT2R significantly increased AT1R (204%, 204 of 100) expression and had no effect on renin activity compared to WT males. The cortical expression of ACE2 activity (WT: 113±8, AT2RKO: 40±11, RFU/min), Ang-(1-7) levels (WT: 7.3±1.4, AT2RKO: 3±0.8 fmoles/mg tissue) and Mas receptor (AT2RKO: 54±15, % of WT) was significantly decreased in AT2RKO males compared to WT. The cortical expression of the AT2R and MasR was 2-fold greater in WT females compared to WT male. The renin activity (WT: 32±2, AT2RKO: 21±0.3, RFU/min) and MasR expression (WT: 187.5±55, AT2KO: 47±9) was significantly decreased in AT2RKO females compared to the female WT. Interestingly, Ang-(1-7) level (WT: 5.7±0.7, AT2RKO 2.6±0.7 fmoles/mg tissue) was decreased but no changes in ACE or ACE2 activity was observed in AT2KO females compared to their WT, suggesting a role of non-ACE2 pathway. This study suggests that AT2R regulates ACE/ACE2 ratio-Ang II-AT1R expression negatively only in males, whereas in females, it regulates Ang-(1-7) potentially via non-ACE2 pathway. Such changes indicate a gender specific mechanisms potentially associated with AT2R-mediated regulation of renal function and blood pressure control.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Xiao C Li ◽  
Ana P Leite ◽  
Liang Zhang ◽  
Jia L Zhuo

The present study tested the hypothesis that intratubular angiotensin II (Ang II) and AT 1a receptors in the proximal tubules of the kidney plays an important role in basal blood pressure control and in the development of Ang II-induced hypertension. Mutant mice with proximal tubule-specific deletion of AT 1a receptors in the kidney, PT- Agtr1a -/- , were generated to test the hypothesis. Eight groups (n=7-12 per group) of adult male wild-type (WT) and PT- Agtr1a -/- mice were infused with or without Ang II for 2 weeks (1.5 mg/kg, i.p.). Basal systolic, diastolic, and mean arterial pressures were ~13 ± 3 mmHg lower in PT- Agtr1a -/- than WT mice ( P <0.01). Basal glomerular filtration rate (GFR), as measured using transdermal FITC-sinistrin, was significantly higher in PT- Agtr1a -/- mice (WT: 160.4 ± 7.0 μl/min vs. PT- Agtr1a -/- : 186.0 ± 6.0 μl/min, P <0.05). Basal 24 h urinary Na + excretion (U Na V) was significantly higher in PT- Agtr1a -/- than WT mice ( P <0.01). In response to Ang II infusion, both WT and PT- Agtr1a -/- mice developed hypertension, and the magnitude of the pressor response to Ang II was similar in WT (Δ43 ± 3 mmHg, P <0.01) and PT- Agtr1a -/- mice (Δ39 ± 5 mmHg, P <0.01). However, the absolute blood pressure level was still 16 ± 3 mmHg lower in PT- Agtr1a -/- mice ( P <0.01). Ang II significantly decreased GFR to 132.2 ± 7.0 μl/min in WT mice ( P <0.01), and to 129.4 ± 18.6 μl/min in PT- Agtr1a -/- mice ( P <0.01), respectively. In WT mice, U Na V increased from 139.3 ± 22.3 μmol/24 h in the control group to 196.4 ± 29.6 μmol/24 h in the Ang II-infused group ( P <0.01). In PT- Agtr1a -/- mice, U Na V increased from 172.0 ± 10.2 μmol/24 h in the control group to 264.7 ± 35.4 μmol/24 h in the Ang II-infused group ( P <0.01). The pressor response to Ang II was attenuated, while the natriuretic response was augmented by losartan in WT and PT- Agtr1a -/- mice ( P <0.01). Finally, proximal tubule-specific deletion of AT 1a receptors significantly augmented the pressure-natriuresis response and natriuretic responses to acute saline infusion ( P <0.01) or a 2% high salt diet ( P <0.01). We concluded that deletion of AT 1a receptors selectively in the proximal tubules lowers basal blood pressure and attenuates Ang II-induced hypertension by increasing GFR and promoting the natriuretic response in PT- Agtr1a -/- mice.


Sign in / Sign up

Export Citation Format

Share Document