Abstract P473: Group IV Cytosolic Phospholipase A2α is Critical for Norepinephrine-Induced Hypertension

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Ajeeth K Pingili ◽  
Chi Yong Song ◽  
Ji Soo Shin ◽  
Joseph V Bonventre ◽  
Kafait U Malik

Previously we reported that angiotensin (Ang) II-induced hypertension and associated cardiovascular and renal dysfunction are mediated by cytosolic phospholipase A 2 α (cPLA 2 α) activation, the release of arachidonic acid (AA), and production of eicosanoids predominantly with pro-hypertensive effects ( Hypertension. 2015; 65: 784-792; 2016; 29: 258-265 ). We have also shown that norepinephrine (NE) by activating cPLA 2 releases AA, and production of prostanoids in vascular smooth muscle cells ( J Biol Chem. 1996; 217:30149-30157; J. Pharmacol. Exp. Ther. 1993; 266: 1113–1124 ). This study was conducted to determine the contribution of cPLA 2 α in NE-induced hypertension. Eight weeks old male wild-type (cPLA 2 α +/+ ) and cPLA 2 α gene disrupted (cPLA 2 α -/- ) mice were infused with NE (10 mg/kg/day, s.c.) or its vehicle using mini-osmotic pumps for 2 weeks, and the systolic blood pressure (SBP) was measured by tail-cuff. Infusion of NE increased the SBP in cPLA 2 α +/+ mice (148±3 vs. 118±3 mmHg, P<0.05, n=4-5); but not in cPLA 2 α -/- mice (122±5 mmHg, n=5). The NE-induced increase in SBP was minimized by treatment with AA metabolism inhibitor, 5,8,11,14-eicosatetraynoic acid (ETYA) (25 mg/kg, i.p., every 3 rd day) in cPLA 2 α +/+ mice (125±5 vs. 148±3 mmHg, P<0.05, n=4-5). Prostaglandin (PG) E2-EP1 and EP3 receptor activation that increase blood pressure have been implicated in Ang II-induced hypertension. In our study antagonists of the EP3 receptor (L-798106) (10 mg/kg, i.p. every 3 rd day) decreased the NE-induced increase in SBP (130±5 vs. 148±3 mmHg, P<0.05, n=5/group). These data suggest that cPLA 2 α contributes to NE-induced increase in SBP via cPLA 2 α activation, the release of AA and generation of eicosanoids, most likely PGE2 that exerts pro-hypertensive effects by stimulating EP3 receptors. Therefore, the development of agents that selectively inhibit the cPLA 2 α activity or block EP3 receptors could be useful in treating hypertension and its pathogenesis.

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Purnima Singh ◽  
Shubha Ranjan Dutta ◽  
ChiYoung Song ◽  
Kafait U Malik

Recently we showed that 2-methoxyestradiol (2-ME), an estrogen (E2) metabolite generated by CYP1B1 (cytochrome P450 1B1) in the paraventricular nucleus (PVN), protects female mice from Ang (angiotensin) II-induced hypertension and increased renal sympathetic activity. We also demonstrated that group IV cPLA 2 α (cytosolic phospholipase A 2 α) in the brain contributes to Ang II-induced hypertension in male mice. This study was conducted to determine the contribution of central cPLA 2 α and its relationship to CYP1B1 in Ang II-induced hypertension in female mice. cPLA 2 α knockdown in the PVN by transduction with adenovirus (Ad)-cPLA 2 α-short hairpin (sh)RNA (200 nL, bilaterally, 1.0х10 12 pfu/mL) but not its control Ad-scrambled (Scr)-shRNA (2.5х10 11 pfu/mL) in ovariectomized (OVX) wild-type ( cPLA 2 α +/+ / Cyp1b1 +/+ , n=8/group) and intact cPLA 2 α +/+ / Cyp1b1 -/- (n=12/group) female mice attenuated the effect of Ang II (700 ng/kg/min, subcutaneous, osmotic pump, 2 weeks) to increase the systolic blood pressure (SBP, mmHg) as measured by tail-cuff (Day 12: 129±3 vs 168±7 and 119±3 vs 172±5, respectively, P<0.05). Moreover, reconstitution of cPLA 2 α in the PVN by transduction with Ad-cPLA 2 α-DNA (1.1х10 12 pfu/mL) but not its control Ad-GFP-DNA (1.0х10 11 pfu/mL) in OVX- cPLA 2 α -/- / Cyp1b1 +/+ mice (n=4/group) restored the effect of Ang II to increase SBP (Day 12: 163±7 vs 124±4, P<0.05). Furthermore, Ad-cPLA 2 α-shRNA but not Ad-Scr-shRNA transduction in the PVN in OVX- cPLA 2 α +/+ / Cyp1b1 +/+ and intact cPLA 2 α +/+ / Cyp1b1 -/- mice reduced and Ad-cPLA 2 α-DNA but not Ad-GFP-DNA transduction in the PVN in OVX- cPLA 2 α -/- / Cyp1b1 +/+ mice restored the effect of Ang II to increase the renal sympathetic activity as indicated by urinary norepinephrine level (ng/mL, 324±36 vs 707±94, 359±49 vs 979±70, 690±44 vs 421±43, respectively, n=4/group, P<0.05) and proteinuria (mg/24 hour, 4±1 vs 10±0.4, 3±0.4 vs 7±1, 9±0.8 vs 3±0.7, respectively, n=4/group, P<0.05). These data suggest that E2-CYP1B1 derived metabolite 2-ME protects against Ang II-induced hypertension, renal sympathetic activity, and proteinuria by inhibiting cPLA 2 α activity in the PVN. Thus, 2-ME and/or agents inhibiting cPLA 2 α activity could be useful for treating hypertension and its pathogenesis in females.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Shetal H Padia ◽  
Nancy L Howell ◽  
Brandon A Kemp ◽  
John J Gildea ◽  
Susanna R Keller ◽  
...  

A major proposed mechanism for the initiation of hypertension involves a primary increase in renal tubular sodium (Na+) reabsorption. Activation of intrarenal angiotensin type-2 receptors (AT2R) increases Na+ excretion; however, the role of intrarenal angiotensin type-2 receptors (AT2R) in the development of hypertension is unknown. Sprague-Dawley rats (N=36) underwent uninephrectomy and telemetric blood pressure probe implantation. Following a 72h recovery, two osmotic minipumps were inserted in each rat, one for chronic systemic delivery of 5% dextrose in water (D5W) or angiotensin II (Ang II, 200 ng/kg/min), and one for chronic intrarenal delivery of D5W (0.25 μL/h x 7d), highly selective AT2R agonist Compound 21 (C-21; 60 ng/kg/min x 7d), or specific AT2R antagonist PD-1223319 (PD; 10 ng/kg/min x 7d). Five groups of rats were studied: Group 1 (Control; N=10): systemic D5W + intrarenal D5W; Group 2 (Ang II-induced hypertension; N=8): systemic Ang II + intrarenal D5W; Group 3 (N=6): systemic Ang II + intrarenal C-21; Group 4 (N=6): systemic Ang II + 48h lead-in intrarenal C-21; Group 5 (N=6): systemic Ang II + intrarenal PD. Systemic Ang II infusion increased mean systolic blood pressure from 126±5 to 190±3 mm Hg over a 7d period in Group 2 (ANOVA F=73; P<1 X 10-6). Intrarenal administration of AT2R agonist C-21 (Groups 3 and 4) markedly inhibited the pressor effect of systemic Ang II (P<0.0001). Intrarenal AT2R antagonist PD (Group 5) augmented the pressor action of Ang II (P<0.0001). Consecutive 24h urinary Na+ excretion (UNaV) was reduced from 0.95±0.04 to 0.34±0.07 μmol/min (P<0.0001) on day 1 of Ang II infusion; Ang II-induced antinatriuresis was inhibited by intrarenal C-21 (P<0.0001) and augmented by intrarenal PD (P<0.0001) during the entire 7d infusion, demonstrating that one of the mechanisms to prevent Ang II-induced hypertension during intrarenal AT2R activation is the abolition of the initial increase in Na+ reabsorption that triggers the hypertensive cascade in this model. Thus, renal AT2Rs represent a novel therapeutic target for the prevention of hypertension.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Nayaab S Khan ◽  
Chi Young Song ◽  
Joseph V Bonventre ◽  
Kafait U Malik

Previously we have shown that Group IV cytosolic phospholipase A 2 α (cPLA 2 α) is critical for the development of angiotensin (Ang) II-induced hypertension, cardiovascular dysfunction and fibrosis. This study was conducted to determine the role of cPLA 2 α in renal dysfunction and end organ damage associated with Ang II-induced hypertension. Eight weeks old male wild type (cPLA 2 α +/+ ) and cPLA 2 α knockout (cPLA 2 α -/- ) mice were infused with Ang II (700 ng/kg/min) or its vehicle for 2 weeks and systolic blood pressure (SBP) was measured weekly by the tail cuff method. Ang II increased SBP (mmHg) in cPLA 2 α +/+ mice to a greater degree than in cPLA 2 α -/- mice (125 ± 2 to 186 ± 7 vs. 125 ± 2 to 132 ± 2 respectively, P< 0.05). Ang II caused renal fibrosis as indicated by accumulation of α-smooth muscle actin, transforming growth factor-β-positive cells and collagen deposition in the kidneys of cPLA 2 α +/+ but not cPLA 2 α -/- mice. Ang II infusion increased reactive oxygen species production in the kidney measured by 2-hydroxyethidium fluorescence (AU), in cPLA 2 α +/+ mice (16.14 ± 0.61 vehicle vs. 24.08 ± 0.61 Ang II P < 0.05) but not in cPLA 2 α -/- mice (16.93 ± 0.58 vehicle vs. 17.19 ± 0.93 Ang II). Mice were placed in metabolic cages to monitor their water intake and urine output. After 13 days of Ang II infusion, 24 hr water intake was increased (4.33 ± 0.14 ml to 8.17 ± 0.27 ml P < 0.05) in cPLA 2 α +/+ mice but not in cPLA 2 α -/- mice (4.87 ± 0.22 ml to 4.8 ± 0.27 ml). Twenty-four hr urine output (μl) was increased to a greater extent in cPLA 2 α +/+ mice (423.33 ± 67.26 to 2030.94 ± 191.58 P < 0.05) vs. cPLA 2 α -/- mice (374.37 ± 66.89 to 787.37 ± 126.50). Urine osmolality (mOsm/kg) was decreased (3778.33 ± 240.21 to 1620 ± 129.23 P < 0.05) in cPLA 2 α +/+ but not in cPLA 2 α -/- mice (4042 ± 306.07 to 3372.5 ± 43.27), and proteinuria (mg/24hr) increased to a greater extent in cPLA 2 α +/+ mice (2.07 ± 0.11 to 6.99 ± 0.34 P < 0.05) vs. cPLA 2 α -/- mice (1.95 ± 0.07 to 3.03 ± 0.20 in cPLA 2 α -/- ). These data suggest that cPLA 2 α contributes to Ang II-induced hypertension, associated renal dysfunction and end organ damage, most likely due to release of arachidonic acid, activation of NADPH oxidase and generation of ROS. Thus, cPLA 2 α could serve as a potential therapeutic target in the treatment of hypertension and end organ damage.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Daniel J Fehrenbach ◽  
Meena S Madhur

Hypertension, or an elevated blood pressure, is the primary modifiable risk factor for cardiovascular disease, the number one cause of mortality worldwide. We previously demonstrated that Th17 activation and interleukin 17A (IL-17A)/IL-21 production is integral for the full development of a hypertensive phenotype as well as the renal and vascular damage associated with hypertension. Rho-associated coiled-coil containing protein Kinase 2 (ROCK2) serves as a molecular switch upregulating Th17 and inhibiting regulatory T cell (Treg) differentiation. We hypothesize that hypertension is characterized by excessive T cell ROCK2 activation leading to increased Th17/Treg ratios and ultimately end-organ damage. We first showed in vitro that KD025, an experimental orally bioavailable ROCK2 inhibitor inhibits Th17 cell proliferation and IL-17A/IL-21 production. To determine if hypertensive stimuli such as endothelial stretch increases T cell ROCK2 expression, we cultured human aortic endothelial cells exposed to 5% (normotensive) or 10% (hypertensive) stretch with circulating human T cells and HLA-DR+ antigen presenting cells. Hypertensive stretch increased T cell ROCK2 expression 2-fold. We then tested the effect of ROCK2 inhibition with KD025 (50mg/kg i.p. daily) in vivo on angiotensin II (Ang II)-induced hypertension. Treatment with KD025 significantly attenuated the hypertensive response within 1 week of Ang II treatment (systolic blood pressure: 139± 8 vs 108±7mmHg) and this persisted for the duration of the 4 week study reaching blood pressures 20 mmHg lower (135±13mmHg) than vehicle treated mice (158±4mmHg p<0.05 effect of treatment 2-way Repeated Measures ANOVA). Flow cytometric analysis of tissue infiltrating leukocytes revealed that KD025 treatment increased Treg/Th17 ratios in the kidney (0.61±0.03 vs 0.79±0.08, p<0.05 student’s t-test). Thus, T cell ROCK2 may be a novel therapeutic target for the treatment of hypertension.


Author(s):  
Megan A Sylvester ◽  
Dennis P Pollow ◽  
Caitlin Moffett ◽  
Wendy Nunez ◽  
Jennifer L Uhrlaub ◽  
...  

Premenopausal females are protected from Angiotensin II (Ang II)-induced hypertension following the adoptive transfer of T cells from normotensive donors. For the present study, we hypothesized that the transfer of hypertensive T cells (HT) or splenocytes (HS) from hypertensive donors would eliminate premenopausal protection from hypertension. Premenopausal Rag-1-/- females received either normotensive (NT) or hypertensive cells, three weeks prior to Ang II infusion (14 days, 490 ng/kg/min). Contrary to our hypothesis, no increase in Ang II-induced blood pressure was observed in the NT/Ang or HT/Ang groups. Flow cytometry demonstrated that renal FoxP3+ T regulatory cells were significantly decreased and IHC showed an increase in renal F4/80+ macrophages in HT/Ang, suggesting a shift in the renal inflammatory environment despite no change in blood pressure. Renal mRNA expression of MCP-1, Endothelin-1, GPER-1 were significantly decreased in HT/Ang. The adoptive transfer of hypertensive splenocytes prior to Ang II infusion (HS/Ang) eliminated premenopausal protection from hypertension and significantly decreased splenic FoxP3+ T regulatory cells compared to females receiving normotensive splenocytes (NS/Ang). Expression of MIP-1a/CCL3, a potent macrophage chemokine was elevated in HS/Ang, however no increase in renal macrophage infiltration occurred. Together, these data show that in premenopausal females T cells from hypertensive donors are not sufficient to induce a robust Ang II mediated hypertension, in contrast, transfer of hypertensive splenocytes (consisting of T/B lymphocytes, dendritic cells, macrophages) is sufficient. Further work is needed to understand how innate and adaptive immune cells and estrogen signaling coordinate to cause differential hypertensive outcomes in premenopausal females.


Author(s):  
Xiao Chun Li ◽  
Ana Paula Oliveira Leite ◽  
Xiaowen Zheng ◽  
Chunling Zhao ◽  
Xu Chen ◽  
...  

The present study used a novel mouse model with proximal tubule-specific knockout of AT 1a receptors in the kidney, PT- Agtr1a −/− , to test the hypothesis that intratubular Ang II (angiotensin II) and AT 1a receptors in the proximal tubules are required for maintaining normal blood pressure and the development of Ang II–induced hypertension. Twenty-six groups (n=6–15 per group) of adult male wild-type, global Agtr1a −/− , and PT- Agtr1a −/− mice were infused with Ang II (1.5 mg/kg per day, IP), or overexpressed an intracellular Ang II fusion protein in the proximal tubules for 2 weeks. Basal telemetry blood pressure were ≈15±3 mm Hg lower in PT- Agtr1a −/− than wild-type mice and ≈13±3 mm Hg higher than Agtr1a −/− mice ( P <0.01). Basal glomerular filtration was ≈23.9% higher ( P <0.01), whereas fractional proximal tubule Na + reabsorption was lower in PT- Agtr1a −/− mice ( P <0.01). Deletion of AT 1a receptors in the proximal tubules augmented the pressure-natriuresis response ( P <0.01) and natriuretic responses to salt loading or Ang III infusion ( P <0.01). Ang II induced hypertension in wild-type, PT- Agtr1a −/− and PT- Nhe3 −/− mice, but the pressor response was ≈16±2 mm Hg lower in PT- Agtr1a −/− and PT- Nhe3 −/− mice ( P <0.01). Deletion of AT 1a receptors or NHE3 (Na + /H + exchanger 3) in the proximal tubules attenuated ≈50% of Ang II–induced hypertension in wild-type mice ( P <0.01), but blocked intracellular Ang II fusion protein-induced hypertension in PT- Agtr1a −/− mice ( P <0.01). Taken together, the results of the present study provide new insights into the critical role of intratubular Ang II/AT 1 (AT 1a )/NHE3 pathways in the proximal tubules in normal blood pressure control and the development of Ang II–induced hypertension.


2008 ◽  
Vol 294 (1) ◽  
pp. F161-F169 ◽  
Author(s):  
Miguel L. Graciano ◽  
Akira Nishiyama ◽  
Keith Jackson ◽  
Dale M. Seth ◽  
Rudy M. Ortiz ◽  
...  

Chronic ANG II infusions lead to increases in intrarenal ANG II levels, hypertension, and tissue injury. Increased blood pressure also elicits increases in renal interstitial fluid (RIF) ATP concentrations that stimulate cell proliferation. We evaluated the contribution of purinergic receptor activation to ANG II-induced renal injury in rats by treating with clopidogrel, a P2Y12 receptor blocker, or with PPADS, a nonselective P2 receptor blocker. α-Actin expression in mesangial cells, afferent arteriolar wall thickness (AAWT), cortical cell proliferation, and macrophage infiltration were used as early markers of renal injury. Clopidogrel and PPADS did not alter blood pressure, renin or kidney ANG II content. α-Actin expression increased from control of 0.6 ± 0.4% of mesangial area to 6.3 ± 1.9% in ANG II-infused rats and this response was prevented by clopidogrel (0.4 ± 0.2%) and PPADS. The increase in AAWT from 4.7 ± 0.1 to 6.0 ± 0.1 mm in ANG II rats was also prevented by clopidogrel (4.8 ± 0.1 mm) and PPADS. ANG II infusion led to interstitial macrophage infiltration (105 ± 16 vs. 62 ± 4 cell/mm2) and tubular proliferation (71 ± 15 vs. 20 ± 4 cell/mm2) and these effects were prevented by clopidogrel (52 ± 4 and 36 ± 3 cell/mm2) and PPADS. RIF ATP levels were higher in ANG II-infused rats than in control rats (11.8 ± 1.9 vs. 5.6 ± 0.6 nmol/l, P < 0.05). The results suggest that activation of vascular and glomerular purinergic P2 receptors may contribute to the mesangial cell transformation, renal inflammation, and vascular hypertrophy observed in ANG II-dependent hypertension.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Kristy Jackson ◽  
Jaideep Singh ◽  
Yen Zhi Ng ◽  
Cheng Peng ◽  
Anida Velagic ◽  
...  

Introduction: We have previously demonstrated that the naturally-occurring anti-inflammatory and pro-resolving protein Annexin-A1 (Anx-A1) limits the acute inflammatory response post myocardial infarction, but its impact on chronic inflammation, such as hypertension, has not been explored. This study aims to investigate the role of Anx-A1 in a preclinical model of hypertension, induced by angiotensin-II (Ang-II). Methods: 15-week-old male C57BL/6 or ANXA1 -/- were anesthetized (isoflurane, 2-4% v/v) and implanted with an osmotic minipump randomly assigned to receive Ang-II (0.7mg/kg/day) or vehicle (saline). Radiotelemetry recordings of blood pressure were taken at 10 intermittent timepoints from baseline to the end of the 29-day infusion period. Animals were euthanized with pentobarbitone (100mg/kg; i.p.) at endpoint and organ weights recorded and normalized to bodyweight. Left ventricle (LV) samples were stained with picrosirius red to assess total LV collagen deposition. Results: Ang II-induced mice at the end of the study had elevated mean arterial pressure (MAP), cardiac hypertrophy and fibrosis compared to normotensive mice (Table). Anx-A1 deficient mice given Ang II had an even greater increase in MAP and cardiac remodeling compared to WT. Interestingly, MAP of Anx-A1 deficient mice at baseline is significantly higher compare to C57BL/6 counterparts (Table). Conclusion: This is the first study to demonstrate that deficiency of Anx-A1 exaggerates cardiac remodeling in AngII-induced hypertension, suggesting that endogenous Anx-A1 might play previously unappreciated physiological role in regulating blood pressure. This supports the development of Anx-A1 based pharmacotherapy against hypertension-induced cardiac damage.


Sign in / Sign up

Export Citation Format

Share Document