scholarly journals Rotigaptide Infusion for the First 7 Days After Myocardial Infarction–Reperfusion Reduced Late Complexity of Myocardial Architecture of the Healing Border‐Zone and Arrhythmia Inducibility

Author(s):  
Rasheda A. Chowdhury ◽  
Michael T. Debney ◽  
Andrea Protti ◽  
Balvinder S. Handa ◽  
Kiran H. K. Patel ◽  
...  

Background Survivors of myocardial infarction are at increased risk of late ventricular arrhythmias, with infarct size and scar heterogeneity being key determinants of arrhythmic risk. Gap junctions facilitate the passage of small ions and morphogenic cell signaling between myocytes. We hypothesized that gap junctions enhancement during infarction–reperfusion modulates structural and electrophysiological remodeling and reduces late arrhythmogenesis. Methods and Results Infarction–reperfusion surgery was carried out in male Sprague‐Dawley rats followed by 7 days of rotigaptide or saline administration. The in vivo and ex vivo arrhythmogenicity was characterized by programmed electrical stimulation 3 weeks later, followed by diffusion‐weighted magnetic resonance imaging and Masson's trichrome histology. Three weeks after 7‐day postinfarction administration of rotigaptide, ventricular tachycardia/ventricular fibrillation was induced on programmed electrical stimulation in 20% and 53% of rats, respectively (rotigaptide versus control), resulting in reduction of arrhythmia score (3.2 versus 1.4, P =0.018), associated with the reduced magnetic resonance imaging parameters fractional anisotropy (fractional anisotropy: −5% versus −15%; P =0.062) and mean diffusivity (mean diffusivity: 2% versus 6%, P =0.042), and remodeling of the 3‐dimensional laminar structure of the infarct border zone with reduction of the mean (16° versus 19°, P =0.013) and the dispersion (9° versus 12°, P =0.015) of the myofiber transverse angle. There was no change in ECG features, spontaneous arrhythmias, or mortality. Conclusions Enhancement of gap junctions function by rotigaptide administered during the early healing phase in reperfused infarction reduces later complexity of infarct scar morphology and programmed electrical stimulation–induced arrhythmias, and merits further exploration as a feasible and practicable intervention in the acute myocardial infarction management to reduce late arrhythmic risk.

2015 ◽  
Vol 5 (3) ◽  
pp. 387-394 ◽  
Author(s):  
William Reginold ◽  
Angela C. Luedke ◽  
Angela Tam ◽  
Justine Itorralba ◽  
Juan Fernandez-Ruiz ◽  
...  

Background/Aims: This study used 3-Tesla magnetic resonance imaging (MRI) tractography to determine if there was an association between tracts crossing white matter hyperintensities (WMH) and cognitive function in elderly persons. Methods: Brain T2-weighted fluid-attenuated inversion recovery (FLAIR) and diffusion tensor MRI scans were acquired in participants above the age of 60 years. Twenty-six persons had WMH identified on T2 FLAIR scans. They completed a battery of neuropsychological tests and were classified as normal controls (n = 15) or with Alzheimer's dementia (n = 11). Tractography was generated by the Fiber Assignment by Continuous Tracking method. All tracts that crossed WMH were segmented. The average fractional anisotropy and average mean diffusivity of these tracts were quantified. We studied the association between cognitive test scores with the average mean diffusivity and average fractional anisotropy of tracts while controlling for age, total WMH volume and diagnosis. Results: An increased mean diffusivity of tracts crossing WMH was associated with worse performance on the Wechsler Memory Scale-III Longest Span Forward (p = 0.02). There was no association between the fractional anisotropy of tracts and performance on cognitive testing. Conclusion: The mean diffusivity of tracts crossing WMH measured by tractography is a novel correlate of performance on the Wechsler Memory Scale-III Longest Span Forward in elderly persons.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuang Ding ◽  
Yu Guo ◽  
Xiaoya Chen ◽  
Silin Du ◽  
Yongliang Han ◽  
...  

AbstractThe aim of this study was to investigate the mechanisms underlying demyelination and remyelination with 7.0 T multiparameter magnetic resonance imaging (MRI) in an alternative cuprizone (CPZ) mouse model of multiple sclerosis (MS). Sixty mice were divided into six groups (n = 10, each), and these groups were imaged with 7.0 T multiparameter MRI and treated with an alternative CPZ administration schedule. T2-weighted imaging (T2WI), susceptibility-weighted imaging (SWI), and diffusion tensor imaging (DTI) were used to compare the splenium of the corpus callosum (sCC) among the groups. Prussian blue and Luxol fast blue staining were performed to assess pathology. The correlations of the mean grayscale value (mGSV) of the pathology results and the MRI metrics were analyzed to evaluate the multiparameter MRI results. One-way ANOVA and post hoc comparison showed that the normalized T2WI (T2-nor), fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) values were significantly different among the six groups, while the mean phase (Φ) value of SWI was not significantly different among the groups. Correlation analysis showed that the correlation between the T2-nor and mGSV was higher than that among the other values. The correlations among the FA, RD, MD, and mGSV remained instructive. In conclusion, ultrahigh-field multiparameter MRI can reflect the pathological changes associated with and the underlying mechanisms of demyelination and remyelination in MS after the successful establishment of an acute CPZ-induced model.


1992 ◽  
Vol 70 (15) ◽  
pp. 1233-1237 ◽  
Author(s):  
F.Paul van Rugge ◽  
Ernst E. van der Wall ◽  
Paul R.M. van Dijkman ◽  
Hans W. Louwerenburg ◽  
Albert de Roos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document