Abstract 069: Mitochondrial Mechanisms Of Reverse Remodeling In Heart Failure
Enhancement of myocardial mitochondrial (mt) function resulting in efficient energy production by means of Left ventricular assist device (LVAD) has been suggested in heart failure (HF) which could have important clinical implications and may represent a novel therapeutic target. However, the basis for this improvement remains unknown. To characterize mt biogenesis, mt genomic integrity and mitophagy in reversing pathological remodeling, we investigated LV tissue from post-LVAD human hearts and after reversal of transaortic constriction (TAC) in mice. In Post-LVAD human hearts there was increased expression of mt fusion and biogenesis, mtDNA levels were normalized and deletion mutation rates were significantly reduced with reverse remodeling and these changes were associated with enhancement of mt ETC complex I and II activities and improved cardiac-myocyte morphology. To better understand the mechanisms underlying mt repair/remodeling with LVAD support, we developed a model of aortic banding (AB) and debanding (DB) in mice. C57BL/6 mice were subjected to 2 weeks of AB and subsequent DB for period of 1 to 20 days and cardiac function and hypertrophy were evaluated by echocardiography and real-time PCR, respectively. Compared with control animals, mice that had undergone banding had a robust hypertrophic response with decline in cardiac function. These parameters were reversed following removal of pressure overload by DB. Even 1 day of unloading led to significant increase in the expression of mt fusion and biogenesis genes. Hearts from AB (2 weeks) mice showed a 3.7-fold (P<0.05) increase in frequency of mtDNA deletions. However, mtDNA deletions were significantly reduced in frequency with DB when compared with AB hearts alone. Increase in expression of autophagy related genes could also be observed after hemodynamic unloading in mouse failing hearts. Removal of pressure overload by DB led to 2.58-fold (P<0.05) increase in expression of LC3B when compared to sham and AB mice. Thus, our data strongly suggest that protective effect of enhanced mt biogenesis, fusion/mtDNA repair and removal of damaged mitochondria by mitophagy could play an important role in maintaining mt integrity and function in the adult heart with reverse remodeling.