Abstract 197: Determining the Potential Role of cTnT Isoform Switching In the Development of Early Childhood Tropomyosin-Linked DCM

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Melissa Lynn ◽  
Lauren Tal-Grinspan ◽  
J.P. Jin ◽  
Jil Tardiff

An oft-noted component of sarcomeric HCM and DCM is the observation that patients within families, carrying the same primary mutation, often exhibit significant phenotypic variability. This lack of a distinct link between genotype and phenotype has greatly complicated clinical management. In a recent study of two large unrelated multigenerational families carrying the tropomyosin (Tm) mutation Asp230Asn (D230N), a striking “bimodal” distribution of severity was observed. In these families, many children (<1 year) with the mutation presented with a severe form of DCM that led to sudden, often fatal congestive heart failure, while adults developed a mild to moderate DCM in mid-life. Of note, children who survived the initial presentation often recovered significant systolic function in adolescence and young adulthood. Therefore, to better understand the mechanism of this “bimodal” phenotype, we began to investigate the potential modulating role of isoform switching by other sarcomeric components. We hypothesize that the age-dependent remodeling seen in children with D230N Tm is a result of temporal isoform switches involving a closely linked Tm binding partner cardiac Troponin T (cTnT). Initial biophysical studies (circular dichroism and regulated in vitro motility, R-IVM) show that while D230N does not alter Tm’s thermal stability it does have a profound impact on myofilament activation. Both maximal velocity of filament sliding and calcium sensitivity were decreased. Furthermore, an additive decrease was observed in these parameters for R-IVM solutions containing cTnT 1 (fetal)+D230N Tm filaments as compared to cTnT 3 (adult)+D230N. Preliminary in vivo studies utilizing our novel double transgenic Tm-D230N x cTnT 1 mice show profound changes in wall thickness and chamber dilation, as compared to age-matched non-transgenic mice and D230N Tm mice. Further studies aim to model the “bimodal” clinical phenotype seen in families with D230N Tm and assess the potential for disease reversibility using a cardiac specific inducible cTnT 1 transgenic mouse model. Our goal is to use a translational approach to better understand the mechanism by which primary mutations lead to distinct clinical phenotypes in order to improve clinical management.

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Melissa Lynn ◽  
Teryn Holeman ◽  
Lauren Tal-Grinspan ◽  
J.P. Jin ◽  
Jil C Tardiff

An oft noted component of sarcomeric DCM is the observation that patients within families carrying the same primary mutation exhibit significant phenotypic variability. This lack of a distinct link between genotype and phenotype has complicated clinical management. Recently two unrelated multigenerational families were identified with the tropomyosin (Tm) mutation Asp230Asn (D230N), exhibiting a striking “bimodal” distribution of severity. In these families, many children (<1 year) with D230N Tm presented with a severe form of DCM that led to sudden, often fatal CHF, while adults developed a mild to moderate DCM in mid-life. Of note, children who survived the initial presentation often recovered significant systolic function into young adulthood. To explain this improvement, despite the persistence of D230N Tm, we hypothesized that the phenotype is modified by other thin filament (TF) isoforms. Thus we propose the age-dependent remodeling seen in children with D230N Tm is a result of temporal isoform switches involving a closely linked Tm binding partner cardiac Troponin T (cTnT). We have shown that D230N Tm leads to a more stable (rigid) filament primarily at the C-terminus of Tm near the Tm overlap, a crucial region for TF regulatory function that cTnT modulates. Myofilaments from D230N Tm mice exhibited a small decrease in calcium sensitivity of force development that was significantly reduced in the presence of cTnT1, supportive of a modulatory role. We assessed cardiac performance in our novel D230N Tm x cTnT1 double transgenic (DTg) mice, % FS was similarly reduced for D230N Tm and DTg mice at 2 months likely due to persistent endogenous expression of cTnT1. Divergent cardiac remodeling occurred at 4 months at which point DTg mice had significantly reduced % FS compared to D230N, indicating that additive exposure to cTnT1 is detrimental to the function of D230N hearts. Additionally, In vitro studies on non-failing and failing human heart tissue found that RNA levels of cTnT1 are significantly higher in failing hearts. Thus modulation by cTnT1 could be a more general mechanism for the progressive remodeling seen in heart failure.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Yoshiyuki Ikeda ◽  
Junichi Sadoshima

Fission and fusion affect mitochondrial turnover in part by modulating mitophagy. This study aimed to clarify the role of mitochondrial fission in regulating cardiac function and autophagy in the heart. Dynamin-related protein 1 (Drp-1) plays an essential role in mediating mitochondrial fission. Therefore, we generated cardiac specific Drp-1 KO mice and utilized cultured cardiomyocytes transduced with adenovirus harboring short hairpin Drp-1 (Ad-shDrp-1) to test the effect of Drp-1 disruption both in vivo and in vitro. In Drp-1 KO hearts we observed a significantly greater mitochondrial mass ratio compared to control, as assessed by electron microscopy (Drp-1 KO: 3.57 ± 1.38, control: 1.18 ± 0.31, P<0.05). Mitochondrial ATP content was significantly lower (0.70 ± 0.07 vs 1.03 ± 0.10, P<0.05), while mitochondrial swelling was significantly greater (% decrease in absorbance; 8.01 ± 1.99 vs 2.01 ± 0.58, P<0.05) in Drp-1 KO hearts versus control. Mitochondrial membrane potential, assessed by JC-1 staining, was significantly reduced in myocytes with knockdown of Drp-1. Taken together, these results suggest that inhibition of fission causes mitochondrial dysfunction. We also examined the effect of Drp-1 depletion on autophagy. We found that the amount of LC-3 II was significantly less (0.47 ± 0.16 vs 1.32 ±0.34, P<0.05), whereas p62 expression was significantly greater (1.14 ± 0.16 vs 0.16 ± 0.06, P<0.01) in Drp-1 KO hearts compared to control. The number of LC3 dots in Ad-shDrp-1 transduced myocytes was lower than that of sh-scramble treatment. We investigated apoptosis and found that the amount of cleaved caspase-3 (0.62 ± 0.24 vs 0.18 ± 0.04, P<0.05) and the number of TUNEL positive cells (0.22 ± 0.12 vs 0.03 ± 0.06%, P<0.01) were higher in Drp-1 KO versus control hearts. Cardiac systolic function was reduced (ejection fraction; 44.5 ± 6.3 vs 85.4 ± 5.7%, P<0.01) and LVW/tibia length was greater (4.48 ± 0.38 vs 3.84 ± 0.58, P<0.05) in Drp-1 KO mice compared to control. Finally, we observed that the survival rate of Drp-1 KO mice was significantly reduced compared to control mice. Our results demonstrate that inhibition of mitochondrial fission via disruption of Drp-1 inhibits autophagy and causes mitochondrial dysfunction, thereby promoting cardiomyopathy.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Melissa Lynn ◽  
Lauren Tal-Grinspan ◽  
J.-P. Jin ◽  
Jil Tardiff

An oft-noted component of sarcomeric DCM is the observation that patients within families carrying the same primary mutation exhibit significant phenotypic variability. This lack of a distinct link between genotype and phenotype has complicated clinical management. In a recent study of two unrelated multigenerational families with the tropomyosin (Tm) mutation Asp230Asn (D230N), a striking “bimodal” distribution of severity was observed. In these families, many children (<1 year) with the mutation presented with a severe form of DCM that led to sudden, often fatal CHF while adults developed a mild to moderate DCM in mid-life. Of note, children who survived the initial presentation often recovered significant systolic function into young adulthood. A potential hypothesis to explain this improvement despite the continued presence of the mutant Tm, is that the phenotype is modified by other thin filament isoforms. Thus we propose that the age-dependent remodeling seen in children with D230N Tm is a result of temporal isoform switches involving a closely linked Tm binding partner cardiac Troponin T (cTnT). Our initial biophysical studies (Regulated-IVM) revealed a decreased Ca2+ sensitivity in filaments containing D230N Tm that is more severe in the presence of fetal TnT (cTnT1), suggesting a modulatory role for cTnT1. Cardiac performance, assessed via 2D echo, in our novel D230N Tm x cTnT1 double transgenic (DTg) mouse model found a significantly reduced % FS for DTg (17%) mice as compared to D230N Tm (21%) littermates. This reduction in %FS was seen at 4 months but not 2 suggesting a progressive cardiomyopathy. Current efforts aim to model the early phase of this “bimodal” phenotype and assess the potential for disease reversibility using a cardiac specific inducible cTnT1 transgenic mouse model. Furthermore, we propose that modulation by cTnT1 could represent a more general mechanism for the progressive remodeling seen in human heart failure. Preliminary in vitro studies with human tissue found that RNA levels of cTnT1 are significantly higher in failing hearts as compared to non-failing. Thus these data suggest an isoform dependent mechanism for the “bimodal” phenotype in patients carrying D230N Tm that could translate to other sarcomeric cardiomyopathies.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
HM Lee ◽  
TG Ahn ◽  
CW Kim ◽  
HJ An
Keyword(s):  

1987 ◽  
Vol 26 (01) ◽  
pp. 1-6 ◽  
Author(s):  
S. Selvaraj ◽  
M. R. Suresh ◽  
G. McLean ◽  
D. Willans ◽  
C. Turner ◽  
...  

The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both a and ß configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models.


1971 ◽  
Vol 66 (3) ◽  
pp. 558-576 ◽  
Author(s):  
Gerald Burke

ABSTRACT A long-acting thyroid stimulator (LATS), distinct from pituitary thyrotrophin (TSH), is found in the serum of some patients with Graves' disease. Despite the marked physico-chemical and immunologic differences between the two stimulators, both in vivo and in vitro studies indicate that LATS and TSH act on the same thyroidal site(s) and that such stimulation does not require penetration of the thyroid cell. Although resorption of colloid and secretion of thyroid hormone are early responses to both TSH and LATS, available evidence reveals no basic metabolic pathway which must be activated by these hormones in order for iodination reactions to occur. Cyclic 3′, 5′-AMP appears to mediate TSH and LATS effects on iodination reactions but the role of this compound in activating thyroidal intermediary metabolism is less clear. Based on the evidence reviewed herein, it is suggested that the primary site of action of thyroid stimulators is at the cell membrane and that beyond the(se) primary control site(s), there exists a multifaceted regulatory system for thyroid hormonogenesis and cell growth.


2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors


Sign in / Sign up

Export Citation Format

Share Document