Abstract 29: Novel Atheroma-specific Atheroprotective Factor Promotes VSMC Pro-survival Signaling

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Amanda K Segedy ◽  
Amy L Pyle ◽  
Bin Li ◽  
Youmin Zhang ◽  
Vladimir Babaev ◽  
...  

Cardiovascular disease, the leading cause of death in the United States, is primarily driven by atherosclerosis. In recent years, studies have focused on identification of naturally expressed, atheroprotective genes for use in delaying development of or preventing complications from atherosclerosis. To this end, we previously identified SPRR3 (small proline rich protein 3) as a gene specifically upregulated in vascular smooth muscle cells (VSMCs) of atheroma versus healthy arterial tissue of humans and mice. In the present study, we generated ApoE-null mice lacking SPRR3, which displayed significantly increased atheroma burden compared with ApoE-null controls. To determine the cellular driver(s) of this phenotype, we investigated SPRR3-dependent changes in bone marrow-derived cells, endothelial cells (ECs), and VSMCs. Bone marrow transplant of SPRR3-expressing cells into SPRR3-/-ApoE-/- recipients failed to rescue atheroma burden. Similarly, no change was observed in SPRR3-deficient versus control ECs. However, apoptosis was significantly reduced in SPRR3-overexpressing VSMCs in vitro. A positive association was also observed between SPRR3 expression and PI3K/Akt activity in VSMCs. The SPRR3-dependent survival advantage observed in SPRR3-overexpressing cells was lost following treatment with PI3K/Akt pathway inhibitor. Our data indicate that SPRR3 protects the atheroma from VSMC loss by promoting survival signaling in lesion VSMCs, thereby modulating atherosclerosis development. As the first identified atheroma-specific VSMC pro-survival factor, SPRR3 represents a potential target for lesion-specific modulation of VSMC survival to inhibit plaque progression.

1988 ◽  
Vol 8 (12) ◽  
pp. 5116-5125
Author(s):  
J W Belmont ◽  
G R MacGregor ◽  
K Wager-Smith ◽  
F A Fletcher ◽  
K A Moore ◽  
...  

Multiple replication-defective retrovirus vectors were tested for their ability to transfer and express human adenosine deaminase in vitro and in vivo in a mouse bone marrow transplantation model. High-titer virus production was obtained from vectors by using both a retrovirus long terminal repeat promoter and internal transcriptional units with human c-fos and herpes virus thymidine kinase promoters. After infection of primary murine bone marrow with one of these vectors, human adenosine deaminase was detected in 60 to 85% of spleen colony-forming units and in the blood of 14 of 14 syngeneic marrow transplant recipients. This system offers the opportunity to assess methods for increasing efficiency of gene transfer, for regulation of expression of foreign genes in hematopoietic progenitors, and for long-term measurement of the stability of expression in these cells.


Blood ◽  
1986 ◽  
Vol 68 (4) ◽  
pp. 954-956 ◽  
Author(s):  
A Butturini ◽  
RC Seeger ◽  
RP Gale

Abstract Bone marrow transplantation is usually preceded by intensive chemotherapy and radiation therapy designed to completely eliminate recipient immune-competent cells that might reject the donor bone marrow. We show that seven of 14 bone marrow transplant recipients who received intensive conditioning retained circulating T lymphocytes that proliferate after incubation with interleukin 2 and phytohemagglutinin and function as effector cells in an in vitro model of graft rejection. These T cells may mediate graft rejection.


Immunobiology ◽  
1986 ◽  
Vol 171 (1-2) ◽  
pp. 93-111
Author(s):  
S. Pollack ◽  
R.J. O'Reilly ◽  
B. Koziner ◽  
R.A. Good ◽  
M.K. Hoffmann

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 140-140 ◽  
Author(s):  
Katrien Van Roosbroeck ◽  
Luk Cox ◽  
Idoya Lahortiga ◽  
Olga Gielen ◽  
Thomas Tousseyn ◽  
...  

Abstract Abstract 140 Molecular mechanisms underlying the pathogenesis of classical Hodgkin lymphoma (cHL) are poorly understood. Although no characteristic chromosomal translocation has been identified in cHL, gain and amplification of the 9p24 region harbouring JAK2 has been observed in up to 50% of cHLs. JAK2 encodes a protein tyrosine kinase (PTK) that plays a key role in the JAK/STAT signalling pathway. Chromosomal translocations and gain-of-function mutations involving JAK2 occur in several haematological malignancies. The aim of this study was to characterize a novel t(4;9)(q21;p24) found in a case of nodular sclerosis HL (NSHL), and to determine the in vitro and in vivo consequences of the fusion associated with this translocation. FISH with BAC clones flanking JAK2/9p24 was used to identify the 9p breakpoint and demonstrated involvement of JAK2. A BAC- and fosmid-walking interphase FISH strategy was further applied to identify the 4q21 breakpoint which was eventually mapped in the region of SEC31A. SEC31A is ubiquitously expressed in human cells and is known to play a role in ER-to-Golgi vesicular transport. Further molecular studies led to the identification of a SEC31A-JAK2 in-frame fusion transcript in which exon 24 of SEC31A is fused to exon 17 of JAK2. Of note, our recent studies showed involvement of SEC31A as a partner of ALK in ALK+ LBCL (Van Roosbroeck et al., Haematologica 2009, in press). To determine the in vitro oncogenic potential of SEC31A-JAK2, a chimeric expression construct was designed and introduced into mouse haematopoietic IL3-dependent Ba/F3 cells. SEC31A-JAK2 was found to transform Ba/F3 cells to IL3-independent growth, demonstrating its implication in oncogenic transformation. The fusion protein is likely to function as a constitutively activated tyrosine kinase, due to SEC31A-mediated oligomerization of JAK2. Attempts to identify the SEC31A domain responsible for the constitutive JAK2 activation are ongoing. Initial experiments with deletion mutants containing or lacking the WD40-like repeats of SEC31A exclude these repeats to be the driving force of JAK2 activation. An in vivo role of the fusion was assessed with a murine bone marrow transplant model. All six recipients of SEC31A-JAK2 transduced bone marrow cells developed a fatal disease after 107 – 174 days, showing involvement of the blood, bone marrow and spleen, and in a subset of mice also of lymph nodes and thymus. FACS and histopathological examination of the involved tissues in 3 mice revealed the development of a T-lymphoblastic lymphoma. Analysis of the remaining mice is still ongoing. In addition, we showed that the T-lymphoblastic disease is transplantable to secondary recipients. Downstream of the SEC31A-JAK2 fusion we could demonstrate constitutive activation of the ERK pathway in Ba/F3 cells bearing the SEC31A-JAK2 construct as well as in the reconstituted mouse tissues. To determine the incidence of JAK2 rearrangements in cHL, we screened 60 unselected cHL cases, including 25 with NSHL, by FISH and cDNA-based nested PCR. Using this approach, we identified one additional case with a SEC31A-JAK2 fusion showing 4q21 and 9p24 breakpoints identical to these in the index case. Moreover, we found a third case with a JAK2 rearrangement and two extra copies of the 3'JAK2. As SEC31A is not involved in the latter aberration, further studies aiming at the identification of the JAK2 partner in this case of cHL are ongoing. The vast majority (80%) of the remaining cHL cases analyzed by FISH revealed recurrent gains/amplifications of JAK2. In summary, we proved that JAK2 is recurrently targeted by chromosomal translocations in cHL. We identified and molecularly characterized the novel t(4;9)(q21;p24) resulting in a SEC31A-JAK2 fusion found in two NSHL cases and identified another not yet characterized JAK2 rearrangement in the third cHL case. We demonstrated the oncogenic potential of the SEC31A-JAK2 fusion both in vitro in the mouse haematopoietic IL3-dependent Ba/F3 cell line and in vivo in a murine bone marrow transplant model. Of note, this is the first report of a recurrent translocation associated with cHL. Although aberrant expression of various PTKs including JAK2 has already been documented in cHL, our results indicate that at least in some cHL cases, this aberration can be driven by a chromosomal translocation. Disclosures: No relevant conflicts of interest to declare.


1970 ◽  
Vol 132 (6) ◽  
pp. 1267-1278 ◽  
Author(s):  
Klaus-Ulrich Hartmann

The immune response to foreign erythrocytes was studied in vitro. Two subpopulations of cells were prepared. One was a population of bone marrow-derived spleen cells, taken from thymectomized, irradiated, and bone marrow-reconstituted mice; there was evidence that most of the precursors of the PFC had been present in this cell population, but few PFC developed in cultures of these cells alone in the presence of immunogenic erythrocytes. Another cell suspension was made from spleens of mice which had been irradiated and injected with thymus cells and erythrocytes; these cells were called educated T cells. The two cell suspensions together allow the formation of PFC in the presence of the erythrocytes which were used to educate the T cells, but not in the presence of noncross-reacting erythrocytes. If bone marrow-derived cells and T cells were kept in culture together with two different species of erythrocytes, and if one of the erythrocytes had been used to educate the T cells, then PFC against each of the erythrocytes could be detected.


2008 ◽  
Vol 41 (2) ◽  
pp. 336-347 ◽  
Author(s):  
M. Chen ◽  
H.-Q. Xie ◽  
L. Deng ◽  
X.-Q. Li ◽  
Y. Wang ◽  
...  

2009 ◽  
Vol 61 (2) ◽  
pp. 100-108 ◽  
Author(s):  
Françoise Roingeard ◽  
Christian Binet ◽  
Jean-Claude Lecron ◽  
Danielle Truglio ◽  
Philippe Colombat ◽  
...  

1996 ◽  
Vol 1 (1) ◽  
pp. 33-36 ◽  
Author(s):  
Alicia D. Zalka ◽  
Anna Sarno Ryan ◽  
Sophie M. Worobec ◽  
Glynis A. Scott

Background: Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine used to stimulate the production of leukocytes and monocytes in neutropenic patients. Cutaneous reactions to GM-CSF are relatively common. However, documentation of the histologic features of GM-CSF-induced dermatoses has only been reported in nine patients. We previously reported three patients with GM-CSF dermatoses, all of whom demonstrated enlarged macrophages in the dermis. Biopsies from two of the patients showed intracytoplasmic elastin fragments in dermal macrophages consistent with GM-CSF's documented ability to increase phagocytic activity of macrophages in vitro. Objective: The objective of the present report is to present an additional case of GM-CSF-induced dermatoses and to document the apparent ability of this cytokine to induce phagocytosis of elastin fragments by macrophages. Methods and Results: The patient received GM-CSF to stimulate bone marrow recovery after a bone marrow transplant. He developed a diffuse macular papular rash that on biopsy revealed enlarged dermal macrophages with prominent intracytoplasmic elastin fragments. Conclusions: Elastophagocytosis by activated macrophages is a common finding in GM-CSF-induced dermatoses and is a relatively specific clue to the diagnosis of this disorder.


2012 ◽  
Vol 25 (1) ◽  
pp. 239-246 ◽  
Author(s):  
E. Nucera ◽  
C. Nicoletti ◽  
C. Chiapparino ◽  
M.L. Pacello ◽  
V. D'Alessio ◽  
...  

AvidinOX® a product containing aldehyde groups, generated by ligand-assisted sugar oxidation of avidin by sodium periodate, maintains the capacity to bind biotin with very high affinity and exhibits the property to chemically link cellular and tissue proteins through Schiff's base formation thus residing in tissues for weeks. In recent studies, we have shown that AvidinOX exhibits much higher persistency in the skeletal muscle than native avidin. The aim of the present study is to evaluate whether AvidinOX-biotin interaction might be exploited to target biotinylated cells to an AvidinOX pre-treated muscle. To accomplish this we performed the following experiments: 1) The proliferation and differentiation properties of biotinylated C2C12 myoblasts were tested in vitro upon linkage to AvidinOX; 2) Bone marrow-derived cells (BMDC) were isolated from GFP positive transgenic mice [strain C57 BL/6-tg (UBC-GFP)] and after biotinylation (bBMDC) were intravenously administered to naive and MAVA+ (Mouse anti Avidin Antibody) C57/B6 mice previously injected with AvidinOX in a tibial muscle (TM). Localization efficiency of GFP+ bBMDC was evaluated on serial sections of the AvidinOX- and vehicle-treated (contra lateral limb) TM, 5 days after transplantation. Results show that biotinylated C2C12 cells, once linked to AvidinOX, maintain their proliferation and differentiation capacity, in vitro. Intravenous injection of biotinylated GFP+ bone marrow-derived cells leads to their specific and efficient localization in the AvidinOX-pre-treated, but not contra lateral muscle of both naive and MAVA+ mice. The present data suggest a potential use of AvidinOX to improve tissue targeted delivery of biotinylated cells.


Sign in / Sign up

Export Citation Format

Share Document