Abstract 366: Disease Phenotype Assessment Across a Library of iPSC-Derived Cardiomyocytes From Patient Cohorts Carrying Distinct Mutations for Familial Hypertrophic Cardiomyopathy

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Jason Tsai ◽  
Jason Lam ◽  
Veronica Sanchez-Freire ◽  
Rishali Gadkari ◽  
Maya Agarwal ◽  
...  

Familial hypertrophic cardiomyopathy (HCM) is the leading cause of sudden cardiac death in the young, and is the most common inherited heart defect affecting 1 in 500 individuals worldwide. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have been demonstrated to model aspects of HCM, but only one iPSC model has been reported for a single HCM mutation in one gene. Here we compare disease phenotypes across a library of patient-specific HCM iPSC-CMs carrying distinct mutations to assess the range of phenotypes that may present in iPSC-CMs derived from different patient cohorts. iPSCs were generated from three patient cohorts carrying known hereditary mutations for HCM in TNNI3, TNNT2, and MYH7 and family-matched controls. Disease phenotypes in patient-specific iPSC-CMs were modeled using immunostaining, Ca2+ imaging, multielectrode array, and video analysis of contractile motion. HCM iPSC-CMs displayed a range of disease phenotypes as assessed by cell size, Ca2+ homeostasis, electrophysiology, and contractile arrhythmia. Different HCM mutations resulted in distinct disease phenotype presentation. Importantly, identical mutations demonstrated similar readouts across multiple lines and clones whereas distinct mutations exhibited differential disease phenotypes. These findings indicate disease-specific iPSC-CMs present with a range of phenotypes for HCM that vary by specific mutation and that iPSC libraries are important for cellular characterization of diseases such as HCM. Figure 1. Derivation and disease phenotype modeling of iPSC-CMs generated from patients carrying distinct familial HCM mutations and family-matched controls.

2021 ◽  
Vol 22 (15) ◽  
pp. 8132
Author(s):  
Jennifer Zhang ◽  
Oscar Hou-In Chou ◽  
Yiu-Lam Tse ◽  
Kwong-Man Ng ◽  
Hung-Fat Tse

Inherited cardiomyopathies are among the major causes of heart failure and associated with significant mortality and morbidity. Currently, over 70 genes have been linked to the etiology of various forms of cardiomyopathy, some of which are X-linked. Due to the lack of appropriate cell and animal models, it has been difficult to model these X-linked cardiomyopathies. With the advancement of induced pluripotent stem cell (iPSC) technology, the ability to generate iPSC lines from patients with X-linked cardiomyopathy has facilitated in vitro modelling and drug testing for the condition. Nonetheless, due to the mosaicism of the X-chromosome inactivation, disease phenotypes of X-linked cardiomyopathy in heterozygous females are also usually more heterogeneous, with a broad spectrum of presentation. Recent advancements in iPSC procedures have enabled the isolation of cells with different lyonisation to generate isogenic disease and control cell lines. In this review, we will summarise the current strategies and examples of using an iPSC-based model to study different types of X-linked cardiomyopathy. The potential application of isogenic iPSC lines derived from a female patient with heterozygous Danon disease and drug screening will be demonstrated by our preliminary data. The limitations of an iPSC-derived cardiomyocyte-based platform will also be addressed.


2020 ◽  
Vol 7 (4) ◽  
pp. 133
Author(s):  
Xiufang Guo ◽  
Agnes Badu-Mensah ◽  
Michael C. Thomas ◽  
Christopher W. McAleer ◽  
James J. Hickman

In vitro generation of functional neuromuscular junctions (NMJs) utilizing the same induced pluripotent stem cell (iPSC) source for muscle and motoneurons would be of great value for disease modeling and tissue engineering. Although, differentiation and characterization of iPSC-derived motoneurons are well established, and iPSC-derived skeletal muscle (iPSC-SKM) has been reported, there is a general lack of systemic and functional characterization of the iPSC-SKM. This study performed a systematic characterization of iPSC-SKM differentiated using a serum-free, small molecule-directed protocol. Morphologically, the iPSC-SKM demonstrated the expression and appropriate distribution of acetylcholine, ryanodine and dihydropyridine receptors. Fiber type analysis revealed a mixture of human fast (Type IIX, IIA) and slow (Type I) muscle types and the absence of animal Type IIB fibers. Functionally, the iPSC-SKMs contracted synchronously upon electrical stimulation, with the contraction force comparable to myofibers derived from primary myoblasts. Most importantly, when co-cultured with human iPSC-derived motoneurons from the same iPSC source, the myofibers contracted in response to motoneuron stimulation indicating the formation of functional NMJs. By demonstrating comparable structural and functional capacity to primary myoblast-derived myofibers, this defined, iPSC-SKM system, as well as the personal NMJ system, has applications for patient-specific drug testing and investigation of muscle physiology and disease.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Haodi Wu ◽  
Huaxiao Yang ◽  
Joe Zhang ◽  
Chi Keung Lam ◽  
June-Wha Rhee ◽  
...  

Background: Diastolic dysfunction is commonly seen in hypertrophic cardiomyopathy (HCM). However, the cellular mechanism is not fully understood, and no effective treatment so far has been developed. We hypothesize here that HCM patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) can recapitulate the cellular mechanism, and provide us a platform for mechanistic study and for drug screening of diastolic dysfunctions in HCM. Methods and Results: We generated beating iPSC-CMs from healthy individuals and HCM patients carrying familial mutations (MYH7 R663H (n=2 lines) and MYBPC3 R943ter (n=2 lines)). Sarcomere shortening measurement in patterned iPSC-CMs with live cell confocal imaging showed significantly prolonged diastolic phase and slower relaxation velocity in HCM iPSC-CMs compared to WT cells. To elucidate the cellular mechanism, Fura-2 AM ratiometric calcium imaging showed marked elevation of resting calcium level and increased abnormal calcium handlings in HCM iPSC-CMs, which were exaggerated by β-adrenergic activation with isoproterenol. By applying calcium transient and contractile force simultaneous recording, we defined a “risk index of diastolic dysfunction” (measured as transient-contraction gain factor), which was significantly increased in HCM iPSC-CMs. Thus, both elevated basal calcium level and increased calcium sensitivity of myofilament contribute to the abnormal diastolic function in HCM iPSC-CMs. Gene expression profiling of HCM and WT iPSC-CMs indicated that increased calcium channels may underlie the increased basal calcium concentration in HCM cells. Indeed, partially blocking the calcium influx by calcium blockers reset the basal calcium level, attenuated calcium mishandling, and restored the diastolic function in HCM iPSC-CMs. Moreover, re-balancing calcium homeostasis significantly improved long-term survival rate of HCM iPSC-CMs at both basal level and under β-adrenergic stress. Conclusion: The iPSC-CM models carrying patient-specific HCM mutations recapitulated diastolic dysfunction on single cell level. Future studies using these platform may reveal additional novel cellular mechanisms and therapeutic targets of diastolic dysfunction in HCM disease.


Circulation ◽  
2020 ◽  
Vol 142 (11) ◽  
pp. 1059-1076
Author(s):  
Ulrich Hanses ◽  
Mandy Kleinsorge ◽  
Lennart Roos ◽  
Gökhan Yigit ◽  
Yun Li ◽  
...  

Background: Noonan syndrome (NS) is a multisystemic developmental disorder characterized by common, clinically variable symptoms, such as typical facial dysmorphisms, short stature, developmental delay, intellectual disability as well as cardiac hypertrophy. The underlying mechanism is a gain-of-function of the RAS–mitogen-activated protein kinase signaling pathway. However, our understanding of the pathophysiological alterations and mechanisms, especially of the associated cardiomyopathy, remains limited and effective therapeutic options are lacking. Methods: Here, we present a family with two siblings displaying an autosomal recessive form of NS with massive hypertrophic cardiomyopathy as clinically the most prevalent symptom caused by biallelic mutations within the leucine zipper-like transcription regulator 1 ( LZTR1 ). We generated induced pluripotent stem cell–derived cardiomyocytes of the affected siblings and investigated the patient-specific cardiomyocytes on the molecular and functional level. Results: Patients’ induced pluripotent stem cell–derived cardiomyocytes recapitulated the hypertrophic phenotype and uncovered a so-far-not-described causal link between LZTR1 dysfunction, RAS–mitogen-activated protein kinase signaling hyperactivity, hypertrophic gene response and cellular hypertrophy. Calcium channel blockade and MEK inhibition could prevent some of the disease characteristics, providing a molecular underpinning for the clinical use of these drugs in patients with NS, but might not be a sustainable therapeutic option. In a proof-of-concept approach, we explored a clinically translatable intronic CRISPR (clustered regularly interspaced short palindromic repeats) repair and demonstrated a rescue of the hypertrophic phenotype. Conclusions: Our study revealed the human cardiac pathogenesis in patient-specific induced pluripotent stem cell–derived cardiomyocytes from NS patients carrying biallelic variants in LZTR1 and identified a unique disease-specific proteome signature. In addition, we identified the intronic CRISPR repair as a personalized and in our view clinically translatable therapeutic strategy to treat NS-associated hypertrophic cardiomyopathy.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Feng lan ◽  
Andrew Lee ◽  
Ping Liang ◽  
Enrique Navarrete ◽  
Li Wang ◽  
...  

Background: Hypertrophic cardiomyopathy (HCM) is a prevalent familial cardiac disorder linked to development of heart failure, arrhythmia, and sudden cardiac death. Molecular genetic studies have demonstrated HCM is caused by mutations in genes encoding for the cardiac sarcomere. However, the pathways by which sarcomeric mutations result in myocyte hypertrophy and contractile abnormalities are not well understood. Methods: We aimed to elucidate the molecular mechanisms underlying the development of HCM through the generation of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from dermal fibroblasts of a 10 member family, five of whom carry a hereditary HCM missense mutation (Arg663His) in the MYH7 gene. Results: As compared to control iPSC-CMs derived from healthy family members, HCM iPSC-CMs exhibited enlarged cell size, increased atrial natriuretic factor (ANF) expression, nuclear translocation of nuclear factor of activated T-cells (NFAT), and aggravated contractile dysfunction in response to stimulation by β-adrenergic agonists. Interestingly, both video analysis of beating cells and whole cell patch clamping revealed arrhythmia in a significant portion of diseased iPSC-CMs at the single cell level. Ca 2+ imaging demonstrated elevated cytoplasmic Ca 2+ content and irregular transients in HCM iPSC-CMs prior to the onset of cellular hypertrophy, suggesting the HCM phenotype is triggered by dysfunction in Ca 2+ cycling. Treatment of irregular Ca 2+ homeostasis by the Ca 2+ channel blocker verapamil prevented development of cellular hypertrophy and arrhythmia. Conclusions: We hypothesize the cellular abnormalities observed in HCM iPSC-CMs are caused by deficiencies in Ca 2+ regulation. We anticipate our findings will elucidate the mechanisms underlying HCM development and identify novel targets for treatment of the disease.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Alexander Loiben ◽  
Clayton Friedman ◽  
Wei-Ming Chen ◽  
Benjamin Chung ◽  
Kai-chun Yang

Introduction: Familial hypertrophic cardiomyopathy (HCM), affecting 1 in 500 adults, is characterized by idiopathic thickening of the heart and occasional impaired systolic function. Mechanisms through which cardiac sarcomeric mutations manifest in HCM are poorly understood. Hypothesis: We previously identified a novel MYH7 E848G mutation associated with HCM. We hypothesize E848G induces cell death that results in impaired tissue contractility in a dose-dependent manner. Methods: We created MYH7 expressing CMs with WT/WT, E848G/WT, or E848G/E848G alleles by CRISPR/Cas9 gene-editing patient-specific induced pluripotent stem cells (hiPSCs). hiPSC-derived cardiomyocytes were metabolically purified and cocultured with stromal cells on PDMS posts to create 3D engineered heart tissues (EHTs) or cultured as a monolayer. Results: Day 65 monolayer E848G/E848G CMs had 48.5% effective cell number relative to WT/WT. p53 (2.80 ± .11-fold), p21 (7.24 ± .18-fold), and BAX (1.64 ± 0.14-fold) mRNA transcripts were upregulated in day 60 monolayer E848G/E848G relative to WT/WT. E848G/E848G EHTs (n = 12) exhibited lower maximum active twitch force (104.6 ± 18.2 μN) and smaller 2D projected area (5.31 ± 0.22 mm 2 ) at day 14 relative to WT/WT (n = 15; 238.0 ± 20.4 μN; 6.87 ± 0.26 mm 2 ). E848G/WT EHTs (n = 7) had intermediate twitch force (168.7 ± 12.2 μN) and 2D area (6.18 ± 0.36 mm 2 ). Conclusion: These results suggest the MYH7 E848G mutation induces p53-associated cell death that leads to reduced tissue contractility. Ongoing studies will elucidate the molecular mechanism through which E848G activates cell death pathways. Figure: Representative EHTs. L-R: WT/WT, E848G/WT, E848G/E848G.


Sign in / Sign up

Export Citation Format

Share Document