Abstract 229: Non-invasive, Patient-specific Assessment of LVAD Modeled With Consideration of LV Ejection and Function

2018 ◽  
Vol 123 (Suppl_1) ◽  
Author(s):  
Huidan (Whitney) Yu ◽  
Anurag Deb ◽  
Monsurul Khan ◽  
Rou Chen ◽  
Yang Yang ◽  
...  
Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 683
Author(s):  
Matilde Lombardero ◽  
Mario López-Lombardero ◽  
Diana Alonso-Peñarando ◽  
María del Mar Yllera

The cat mandible is relatively small, and its manipulation implies the use of fixing methods and different repair techniques according to its small size to keep its biomechanical functionality intact. Attempts to fix dislocations of the temporomandibular joint should be primarily performed by non-invasive techniques (repositioning the bones and immobilisation), although when this is not possible, a surgical method should be used. Regarding mandibular fractures, these are usually concurrent with other traumatic injuries that, if serious, should be treated first. A non-invasive approach should also first be considered to fix mandibular fractures. When this is impractical, internal rigid fixation methods, such as osteosynthesis plates, should be used. However, it should be taken into account that in the cat mandible, dental roots and the mandibular canal structures occupy most of the volume of the mandibular body, a fact that makes it challenging to apply a plate with fixed screw positions without invading dental roots or neurovascular structures. Therefore, we propose a new prosthesis design that will provide acceptable rigid biomechanical stabilisation, but avoid dental root and neurovascular damage, when fixing simple mandibular body fractures. Future trends will include the use of better diagnostic imaging techniques, a patient-specific prosthesis design and the use of more biocompatible materials to minimise the patient’s recovery period and suffering.


2017 ◽  
Vol 32 (2) ◽  
pp. 179-190 ◽  
Author(s):  
Gretchen B Salsich ◽  
Barbara Yemm ◽  
Karen Steger-May ◽  
Catherine E Lang ◽  
Linda R Van Dillen

Objective: To investigate whether a novel, task-specific training intervention that focused on correcting pain-producing movement patterns was feasible and whether it would improve hip and knee kinematics, pain, and function in women with patellofemoral pain. Design: Prospective, non-randomized, within-group, double baseline, feasibility intervention study. Subjects: A total of 25 women with patellofemoral pain were enrolled. Intervention: The intervention, delivered 2×/week for six weeks, consisted of supervised, high-repetition practice of daily weight-bearing and recreational activities. Activities were selected and progressed based on participants’ interest and ability to maintain optimal alignment without increasing pain. Main measures: Primary feasibility outcomes were recruitment, retention, adherence, and treatment credibility (Credibility/Expectancy Questionnaire). Secondary outcomes assessing intervention effects were hip and knee kinematics, pain (visual analog scale: current, average in past week, maximum in past week), and function (Patient-Specific Functional Scale). Results: A total of 25 participants were recruited and 23 were retained (92% retention). Self-reported average daily adherence was 79% and participants were able to perform their prescribed home program correctly (reduced hip and knee frontal plane angles) by the second intervention visit. On average, treatment credibility was rated 25 (out of 27) and expectancy was rated 22 (out of 27). Hip and knee kinematics, pain, and function improved following the intervention when compared to the control phase. Conclusion: Based on the feasibility outcomes and preliminary intervention effects, this task-specific training intervention warrants further investigation and should be evaluated in a larger, randomized clinical trial.


2021 ◽  
pp. 147332502198942
Author(s):  
Madeleine Wirzén ◽  
Asta Čekaitė

The assessment of prospective adoptive parents is a complex task for professional social workers. In this study, we examine the structure and function of professional social workers’ follow-up questions in assessment talk with adoption applicants. The analysis shows that adoption assessment through interviews involved a delicate and complex task that was accomplished by using a particular genre of institutional talk. This both invited the applicants’ extended and ‘open-ended’ responses and steered these responses and their development towards the institutionally relevant topics. Detailed interaction analysis demonstrates that social workers used a broad range of question types to steer and guide applicants’ responses, organising talk about specific assessment topics. On the basis of initial open-ended topic initiations and applicants’ responses, the social workers steered topic development by using follow-up moves such as polar questions and clarifying questions that asked for specification, challenged applicants’ ideas, confirmed their knowledge and encouraged self-reflection. These follow-up moves allowed social workers to achieve the progression of talk into relevant areas of investigation and constituted a central and characteristic feature of assessment interviews. We suggest that they allow social workers to accomplish two hybrid institutional goals: i) the assessment of applicants’ suitability and ii) applicants’ preparation for future parenthood.


2007 ◽  
Vol 19 (8) ◽  
pp. 910 ◽  
Author(s):  
Mark G. Eramian ◽  
Gregg P. Adams ◽  
Roger A. Pierson

A ‘virtual histology’ can be thought of as the ‘staining’ of a digital ultrasound image via image processing techniques in order to enhance the visualisation of differences in the echotexture of different types of tissues. Several candidate image-processing algorithms for virtual histology using ultrasound images of the bovine ovary were studied. The candidate algorithms were evaluated qualitatively for the ability to enhance the visual differences in intra-ovarian structures and quantitatively, using standard texture description features, for the ability to increase statistical differences in the echotexture of different ovarian tissues. Certain algorithms were found to create textures that were representative of ovarian micro-anatomical structures that one would observe in actual histology. Quantitative analysis using standard texture description features showed that our algorithms increased the statistical differences in the echotexture of stroma regions and corpus luteum regions. This work represents a first step toward both a general algorithm for the virtual histology of ultrasound images and understanding dynamic changes in form and function of the ovary at the microscopic level in a safe, repeatable and non-invasive way.


Author(s):  
Stamatia Pagoulatou ◽  
Karl-Philipp Rommel ◽  
Karl-Patrik Kresoja ◽  
Maximilian von Roeder ◽  
Philipp Lurz ◽  
...  

Accurate assessment of the left ventricular (LV) systolic function is indispensable in the clinic. However, estimation of a precise index of cardiac contractility, i.e., the end-systolic elastance (Ees), is invasive and cannot be established as clinical routine. The aim of this work was to present and validate a methodology that allows for the estimation of Ees from simple and readily available non-invasive measurements. The method is based on a validated model of the cardiovascular system and non-invasive data from arm-cuff pressure and routine echocardiography to render the model patient-specific. Briefly, the algorithm first uses the measured aortic flow as model input and optimizes the properties of the arterial system model in order to achieve correct prediction of the patient's peripheral pressure. In a second step, the personalized arterial system is coupled with the cardiac model (time-varying elastance model) and the LV systolic properties, including Ees, are tuned to predict accurately the aortic flow waveform. The algorithm was validated against invasive measurements of Ees (multiple pressure-volume loop analysis) taken from n=10 heart failure patients with preserved ejection fraction and n=9 patients without heart failure. Invasive measurements of Ees (median 2.4 mmHg/mL, range [1.0, 5.0] mmHg/mL) agreed well with method predictions (nRMSE=9%, ρ=0.89, bias=-0.1 mmHg/mL and limits of agreement [-0.9, 0.6] mmHg/mL). This is a promising first step towards the development of a valuable tool that can be used by clinicians to assess systolic performance of the LV in the critically ill.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Mahnaz Maddah ◽  
Kevin Loewke

A promising application of induced pluripotent stem cells (iPSCs) is the generation of patient-specific cardiomyocytes (CMs), which can be used for drug development and safety testing related to cardiovascular health. iPSC-derived CMs can be used for preclinical testing of new drugs that may cause drug-induced arrhythmia or long QT syndrome, as well as post-market safety testing of existing drugs. The measurement of QT interval for iPSC-derived CMs is commonly analyzed using electrophysiological potentials captured by a micro-electrode array (MEA). While such systems are the current standard for characterization, they can be expensive and low-throughput, require high cell plating density, and due to the direct contact between cells and electrodes, may cause undesirable cellular response. Here, we present a new method to non-invasively measure the QT-interval in iPSC-derived CMs using video microscopy and computer vision analysis. Our algorithms can reliably and automatically extract beating signal characteristics such as frequency, irregularity, and duration through image analysis of cardiomyocyte motion. Through a correlative study with MEA, we demonstrate that a non-invasive measurement of QT interval can be derived from the duration of visible cellular motion that occurs during contraction and relaxation. We also show that our system can accurately characterize the cellular response from the addition of compounds known to modulate beating frequency and irregularity. Our measurement technique is robust, automated, and requires no physical or chemical contact with the cells, making it ideal for cardiovascular drug development and cardiotoxicity testing.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Markus Seeger ◽  
Christoph Dehner ◽  
Dominik Jüstel ◽  
Vasilis Ntziachristos

AbstractThe non-invasive investigation of multiple biological processes remains a methodological challenge as it requires capturing different contrast mechanisms, usually not available with any single modality. Intravital microscopy has played a key role in dynamically studying biological morphology and function, but it is generally limited to resolving a small number of contrasts, typically generated by the use of transgenic labels, disturbing the biological system. We introduce concurrent 5-modal microscopy (Co5M), illustrating a new concept for label-free in vivo observations by simultaneously capturing optoacoustic, two-photon excitation fluorescence, second and third harmonic generation, and brightfield contrast. We apply Co5M to non-invasively visualize multiple wound healing biomarkers and quantitatively monitor a number of processes and features, including longitudinal changes in wound shape, microvascular and collagen density, vessel size and fractality, and the plasticity of sebaceous glands. Analysis of these parameters offers unique insights into the interplay of wound closure, vasodilation, angiogenesis, skin contracture, and epithelial reformation in space and time, inaccessible by other methods. Co5M challenges the conventional concept of biological observation by yielding multiple simultaneous parameters of pathophysiological processes in a label-free mode.


2020 ◽  
Vol 58 (8) ◽  
pp. 1667-1679
Author(s):  
Benedikt Franke ◽  
J. Weese ◽  
I. Waechter-Stehle ◽  
J. Brüning ◽  
T. Kuehne ◽  
...  

Abstract The transvalvular pressure gradient (TPG) is commonly estimated using the Bernoulli equation. However, the method is known to be inaccurate. Therefore, an adjusted Bernoulli model for accurate TPG assessment was developed and evaluated. Numerical simulations were used to calculate TPGCFD in patient-specific geometries of aortic stenosis as ground truth. Geometries, aortic valve areas (AVA), and flow rates were derived from computed tomography scans. Simulations were divided in a training data set (135 cases) and a test data set (36 cases). The training data was used to fit an adjusted Bernoulli model as a function of AVA and flow rate. The model-predicted TPGModel was evaluated using the test data set and also compared against the common Bernoulli equation (TPGB). TPGB and TPGModel both correlated well with TPGCFD (r > 0.94), but significantly overestimated it. The average difference between TPGModel and TPGCFD was much lower: 3.3 mmHg vs. 17.3 mmHg between TPGB and TPGCFD. Also, the standard error of estimate was lower for the adjusted model: SEEModel = 5.3 mmHg vs. SEEB = 22.3 mmHg. The adjusted model’s performance was more accurate than that of the conventional Bernoulli equation. The model might help to improve non-invasive assessment of TPG.


Sign in / Sign up

Export Citation Format

Share Document