A Parametric Approach to Orthographic Processing in the Brain: An fMRI Study

2000 ◽  
Vol 12 (2) ◽  
pp. 281-297 ◽  
Author(s):  
M. -A. Tagamets ◽  
Jared M. Novick ◽  
Maria L. Chalmers ◽  
Rhonda B. Friedman

Brain activation studies of orthographic stimuli typically start with the premise that different types of orthographic strings (e.g., words, pseudowords) differ from each other in discrete ways, which should be reflected in separate and distinct areas of brain activation. The present study starts from a different premise: Words, pseudowords, letterstrings, and false fonts vary systematically across a continuous dimension of familiarity to English readers. Using a one-back matching task to force encoding of the stimuli, the four types of stimuli were visually presented to healthy adult subjects while fMRI activations were obtained. Data analysis focused on parametric comparisons of fMRI activation sites. We did not find any region that was exclusively activated for real words. Rather, differences among these string types were mainly expressed as graded changes in the balance of activations among the regions. Our results suggests that there is a widespread network of brain regions that form a common network for the processing of all orthographic string types.

2021 ◽  
Author(s):  
Dazhi Cheng ◽  
Mengyi Li ◽  
Naiyi Wang ◽  
Liangyuan Ouyang ◽  
Xinlin Zhou

Abstract Background Mathematical expressions mainly include arithmetic (such as 8 − (1 + 3)) and algebraic expressions (such as a − (b + c)). Previous studies shown that both algebraic processing and arithmetic involved the bilateral parietal brain regions. Although behavioral and neuropsychological studies have revealed the dissociation between algebra and arithmetic, how algebraic processing is dissociated from arithmetic in brain networks is still unclear. Methods Using functional magnetic resonance imaging (fMRI), this study scanned 30 undergraduates and directly compared the brain activation during algebra and arithmetic. Brain activations, single-trial (item-wise) interindividual correlation and mean-trial interindividual correlation related to algebra processing were compared with those related to arithmetic. Results Brain activation analyses showed that algebra elicited greater activation in the angular gyrus and arithmetic elicited greater activation in the bilateral supplementary motor area, left insula, and left inferior parietal lobule. Interindividual single-trial brain-behavior correlation revealed significant brain-behavior correlations in the semantic network, including the middle temporal gyri, inferior frontal gyri, dorsomedial prefrontal cortices, and left angular gyrus, for algebra. For arithmetic, the significant brain-behavior correlations were located in the phonological network, including the precentral gyrus and supplementary motor area, and in the visuospatial network, including the bilateral superior parietal lobules. Conclusion These findings suggest that algebra relies on the semantic network and arithmetic relies on the phonological and visuospatial networks.


2020 ◽  
Vol 6 ◽  
Author(s):  
Tripp Shealy ◽  
John Gero ◽  
Mo Hu ◽  
Julie Milovanovic

Abstract This paper presents the results of studying the brain activations of 30 engineering students when using three different design concept generation techniques: brainstorming, morphological analysis, and TRIZ. Changes in students’ brain activation in the prefrontal cortex were measured using functional near-infrared spectroscopy. The results are based on the area under the curve analysis of oxygenated hemodynamic response as well as an assessment of functional connectivity using Pearson’s correlation to compare students’ cognitive brain activations using these three different ideation techniques. The results indicate that brainstorming and morphological analysis demand more cognitive activation across the prefrontal cortex (PFC) compared to TRIZ. The highest cognitive activation when brainstorming and using morphological analysis is in the right dorsolateral PFC (DLPFC) and ventrolateral PFC. These regions are associated with divergent thinking and ill-defined problem-solving. TRIZ produces more cognitive activation in the left DLPFC. This region is associated with convergent thinking and making judgments. Morphological analysis and TRIZ also enable greater coordination (i.e., synchronized activation) between brain regions. These findings offer new evidence that structured techniques like TRIZ reduce cognitive activation, change patterns of activation and increase coordination between regions in the brain.


2018 ◽  
Vol 30 (7) ◽  
pp. 963-972 ◽  
Author(s):  
Andrew D. Engell ◽  
Na Yeon Kim ◽  
Gregory McCarthy

Perception of faces has been shown to engage a domain-specific set of brain regions, including the occipital face area (OFA) and the fusiform face area (FFA). It is commonly held that the OFA is responsible for the detection of faces in the environment, whereas the FFA is responsible for processing the identity of the face. However, an alternative model posits that the FFA is responsible for face detection and subsequently recruits the OFA to analyze the face parts in the service of identification. An essential prediction of the former model is that the OFA is not sensitive to the arrangement of internal face parts. In the current fMRI study, we test the sensitivity of the OFA and FFA to the configuration of face parts. Participants were shown faces in which the internal parts were presented in a typical configuration (two eyes above a nose above a mouth) or in an atypical configuration (the locations of individual parts were shuffled within the face outline). Perception of the atypical faces evoked a significantly larger response than typical faces in the OFA and in a wide swath of the surrounding posterior occipitotemporal cortices. Surprisingly, typical faces did not evoke a significantly larger response than atypical faces anywhere in the brain, including the FFA (although some subthreshold differences were observed). We propose that face processing in the FFA results in inhibitory sculpting of activation in the OFA, which accounts for this region's weaker response to typical than to atypical configurations.


2021 ◽  
Vol 7 (20) ◽  
pp. eabf5676
Author(s):  
Guofen Ma ◽  
Yanmei Liu ◽  
Lizhao Wang ◽  
Zhongyi Xiao ◽  
Kun Song ◽  
...  

Sensory processing is subjected to modulation by behavioral contexts that are often mediated by long-range inputs to cortical interneurons, but their selectivity to different types of interneurons remains largely unknown. Using rabies-virus tracing and optogenetics-assisted recording, we analyzed the long-range connections to various brain regions along the hierarchy of visual processing, including primary visual cortex, medial association cortices, and frontal cortices. We found that hierarchical corticocortical and thalamocortical connectivity is reflected by the relative weights of inputs to parvalbumin-positive (PV+) and vasoactive intestinal peptide–positive (VIP+) neurons within the conserved local circuit motif, with bottom-up and top-down inputs preferring PV+ and VIP+ neurons, respectively. Our algorithms based on innervation weights for these two types of local interneurons generated testable predictions of the hierarchical position of many brain areas. These results support the notion that preferential long-range inputs to specific local interneurons are essential for the hierarchical information flow in the brain.


2018 ◽  
Author(s):  
Philip Shamash ◽  
Matteo Carandini ◽  
Kenneth D Harris ◽  
Nicholas A Steinmetz

It is now possible to record from hundreds of neurons across multiple brain regions in a single electrophysiology experiment. An essential step in the ensuing data analysis is to assign recorded neurons to the correct brain regions. Brain regions are typically identified after the recordings by comparing images of brain slices to a reference atlas by eye. This introduces error, in particular when slices are not cut at a perfectly coronal angle or when electrode tracks span multiple slices. Here we introduce SHARP-Track, a tool to localize regions of interest and plot the brain regions they pass through. SHARP-Track offers a MATLAB user interface to explore the Allen Mouse Brain Atlas, register asymmetric slice images to the atlas using manual input, and interactively analyze electrode tracks. We find that it reduces error compared to localizing electrodes in a reference atlas by eye. See github.com/cortex-lab/allenCCF for the software and wiki.


Author(s):  
Asan Yalmaz Hasan Almulla ◽  
Rasim Mogulkoc ◽  
Abdulkerim Kasim Baltaci ◽  
Dervis Dasdelen

: Learning and memory are two of our mind's most magical abilities. Different brain regions have roles in processing and storing different types of memories. The hippocampus is the part of the brain responsible for receiving information and storing it in the neocortex. One of the most impressive characteristics of the hippocampus is its capacity for neurogenesis, which is a process in which new neurons are produced and then transformed into mature neurons and finally integrated into neural circuits. The neurogenesis process in the hippocampus, an example of neuroplasticity in the adult brain, is believed to aid hippocampal-dependent learning and memory. New neurons are constantly produced in the hippocampus and integrated into the pre-existing neuronal network; this allows old memories already stored in the neocortex to be removed from the hippocampus and replaced with new ones. Factors affecting neurogenesis in the hippocampus may also affect hippocampal-dependent learning and memory. The flavonoids can particularly exert powerful actions in mammalian cognition and improve hippocampal-dependent learning and memory by positively affecting hippocampal neurogenesis.


2020 ◽  
Author(s):  
Kanan Hirano ◽  
Kentaro Oba ◽  
Toshiki Saito ◽  
Shohei Yamazaki ◽  
Ryuta Kawashima ◽  
...  

Facing one’s own death and managing the fear of it are important existential issues, particularly in older populations. Although recent functional magnetic resonance imaging (fMRI) studies have investigated brain responses to death-related stimuli, none has examined whether the brain activation was specific to self-death or how it was related to the fear of death. In this study, during the fMRI measurements, 34 elderly participants (aged 60–72) were presented with either death-related or death-unrelated negative words and asked to evaluate these words based on their relevance to ‘self’ or ‘other’. Result showed that only the left supplementary motor area (SMA) was selectively activated during self-relevant judgments on death-related words. Regression analyses of the effect of fear of death on brain activation during death-related thoughts identified a significant negative linear correlation in the right supramarginal gyrus (SMG) and an inverted-U-shaped correlation in the posterior cingulate cortex (PCC) only during self-relevant judgments. Our results demonstrated the involvement of the SMA in existential aspect within thoughts of death. The distinct fear-of-death-dependent responses in the SMG and PCC may reflect fear-associated distancing of the physical self and the processing of death-related thoughts as a self-relevant future agenda, respectively.


NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S186
Author(s):  
J.H. Sohn ◽  
J.M. Lee ◽  
I.H. Kim ◽  
C.K. Lee ◽  
Y.K. Kim ◽  
...  
Keyword(s):  

NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S66
Author(s):  
K Asano ◽  
Y Taki ◽  
H Hashizume ◽  
Y Sassa ◽  
M Asano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document