Inattentional Amnesia to Words in a High Attentional Load Task

2005 ◽  
Vol 17 (5) ◽  
pp. 768-776 ◽  
Author(s):  
María Ruz ◽  
Michael S. Worden ◽  
Pío Tudela ◽  
Bruce D. McCandliss

We investigated the dependence of visual word processes on attention by examining event-related potential (ERP) responses as subjects viewed words while their attention was engaged by a concurrent highly demanding task. We used a paradigm from a previous functional magnetic resonance imaging (fMRI) experiment [Rees, G., Russel, C., Frith, C. D., & Driver, J. Inattentional blindness vs. inattentional amnesia for fixated but ignored words. Science, 286, 2504–2506, 1999] in which participants attended either to drawings or to overlapping letters (words or nonwords) presented at a fast rate. Although previous fMRI results supported the notion that word processing was obliterated by attention withdrawal, the current electrophysiological results demonstrated that visual words are processed even under conditions in which attentional resources are engaged in a different task that does not involve reading. In two experiments, ERPs for attended words versus nonwords differed in the left frontal, left posterior, and medial scalp locations. However, in contrast to the previous fMRI results, ERPs responded differentially to ignored words and consonant strings in several regions. These results suggest that fMRI and ERPs may have differential sensitivity to some forms of neural activation. Moreover, they provide evidence to restore the notion that the brain analyzes words even when attention is tied to another dimension.

2009 ◽  
Vol 21 (2) ◽  
pp. 222-229 ◽  
Author(s):  
Martin Kronbichler ◽  
Johannes Klackl ◽  
Fabio Richlan ◽  
Matthias Schurz ◽  
Wolfgang Staffen ◽  
...  

This functional magnetic resonance imaging study contrasted case-deviant and letter-deviant forms with familiar forms of the same phonological words (e.g., TaXi and Taksi vs. Taxi) and found that both types of deviance led to increased activation in a left occipito-temporal region, corresponding to the visual word form area (VWFA). The sensitivity of the VWFA to both types of deviance may suggest that this region represents well-known visual words not only as sequences of abstract letter identities but also includes information on the typical case-format pattern of visual words. Case-deviant items, in addition, led to increased activation in a right occipito-temporal region and in a left occipital and a left posterior occipito-temporal region, which may reflect increased demands on letter processing posed by the case-deviant forms.


Author(s):  
Hamid Karimi-Rouzbahani ◽  
Mozhgan Shahmohammadi ◽  
Ehsan Vahab ◽  
Saeed Setayeshi ◽  
Thomas Carlson

AbstractHumans are remarkably efficent at recognizing objects. Understanding how the brain performs object recognition has been challenging. Our understanding has been advanced substantially in recent years with the development of multivariate decoding methods. Most start-of-the-art decoding procedures, make use of the ‘mean’ neural activation to extract object category information, which overlooks temporal variability in the signals. Here, we studied category-related information in 30 mathematically distinct features from electroencephalography (EEG) across three independent and highly-varied datasets using multivariate decoding. While the event-related potential (ERP) components of N1 and P2a were among the most informative features, the informative original signal samples and Wavelet coefficients, selected through principal component analysis, outperformed them. The four mentioned informative features showed more pronounced decoding in the Theta frequency band, which has been suggested to support feed-forward processing of visual information in the brain. Correlational analyses showed that the features, which were most informative about object categories, could predict participants’ behavioral performance (reaction time) more accurately than the less informative features. These results suggest a new approach for studying how the human brain encodes object category information and how we can read them out more optimally to investigate the temporal dynamics of the neural code. The codes are available online at https://osf.io/wbvpn/.


2021 ◽  
Vol 11 (5) ◽  
pp. 553
Author(s):  
Chenggang Wu ◽  
Juan Zhang ◽  
Zhen Yuan

In order to explore the affective priming effect of emotion-label words and emotion-laden words, the current study used unmasked (Experiment 1) and masked (Experiment 2) priming paradigm by including emotion-label words (e.g., sadness, anger) and emotion-laden words (e.g., death, gift) as primes and examined how the two kinds of words acted upon the processing of the target words (all emotion-laden words). Participants were instructed to decide the valence of target words, and their electroencephalogram was recorded at the same time. The behavioral and event-related potential (ERP) results showed that positive words produced a priming effect whereas negative words inhibited target word processing (Experiment 1). In Experiment 2, the inhibition effect of negative emotion-label words on emotion word recognition was found in both behavioral and ERP results, suggesting that modulation of emotion word type on emotion word processing could be observed even in the masked priming paradigm. The two experiments further supported the necessity of defining emotion words under an emotion word type perspective. The implications of the findings are proffered. Specifically, a clear understanding of emotion-label words and emotion-laden words can improve the effectiveness of emotional communications in clinical settings. Theoretically, the emotion word type perspective awaits further explorations and is still at its infancy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erica N. Grodin ◽  
Spencer Bujarski ◽  
Brandon Towns ◽  
Elizabeth Burnette ◽  
Steven Nieto ◽  
...  

AbstractIbudilast, a neuroimmune modulator which selectively inhibits phosphodiesterases (PDE)-3, -4, -10, and -11, and macrophage migration inhibitory factor (MIF), shows promise as a novel pharmacotherapy for alcohol use disorder (AUD). However, the mechanisms of action underlying ibudilast’s effects on the human brain remain largely unknown. Thus, the current study examined the efficacy of ibudilast to improve negative mood, reduce heavy drinking, and attenuate neural reward signals in individuals with AUD. Fifty-two nontreatment-seeking individuals with AUD were randomized to receive ibudilast (n = 24) or placebo (n = 28). Participants completed a 2-week daily diary study during which they filled out daily reports of their past day drinking, mood, and craving. Participants completed an functional magnetic resonance imaging (fMRI) alcohol cue-reactivity paradigm half-way through the study. Ibudilast did not have a significant effect on negative mood (β = −0.34, p = 0.62). However, ibudilast, relative to placebo, reduced the odds of heavy drinking across time by 45% (OR = 0.55, (95% CI: 0.30, 0.98)). Ibudilast also attenuated alcohol cue-elicited activation in the ventral striatum (VS) compared to placebo (F(1,44) = 7.36, p = 0.01). Alcohol cue-elicited activation in the VS predicted subsequent drinking in the ibudilast group (F(1,44) = 6.39, p = 0.02), such that individuals who had attenuated ventral striatal activation and took ibudilast had the fewest number of drinks per drinking day in the week following the scan. These findings extend preclinical and human laboratory studies of the utility of ibudilast to treat AUD and suggest a biobehavioral mechanism through which ibudilast acts, namely, by reducing the rewarding response to alcohol cues in the brain leading to a reduction in heavy drinking.


2011 ◽  
Vol 21 (3) ◽  
pp. 88-95 ◽  
Author(s):  
Deryk S. Beal

We are amassing information about the role of the brain in speech production and the potential neural limitations that coincide with developmental stuttering at a fast rate. As such, it is difficult for many clinician-scientists who are interested in the neural correlates of stuttering to stay informed of the current state of the field. In this paper, I aim to inspire clinician-scientists to tackle hypothesis-driven research that is grounded in neurobiological theory. To this end, I will review the neuroanatomical structures, and their functions, which are implicated in speech production and then describe the relevant differences identified in these structures in people who stutter relative to their fluently speaking peers. I will conclude the paper with suggestions on directions of future research to facilitate the evolution of the field of neuroimaging of stuttering.


2013 ◽  
Vol 126 (2) ◽  
pp. 217-229 ◽  
Author(s):  
Lucy J. MacGregor ◽  
Yury Shtyrov

2020 ◽  
Author(s):  
Mareike J. Hülsemann ◽  
Björn Rasch

AbstractOur thoughts, plans and intentions can influence physiological sleep, but the underlying mechanisms are unknown. According to the theoretical framework of “embodied cognition”, the semantic content of cognitive processes is represented by multimodal networks in the brain which also include body-related functions. Such multimodal representation could offer a mechanism which explains mutual influences between cognition and sleep. In the current study we tested whether sleep-related words are represented in multimodal networks by examining the effect of congruent vs. incongruent body positions on word processing during wakefulness.We experimentally manipulated the body position of 66 subjects (50 females, 16 males, 19-40 years old) between standing upright and lying down. Sleep- and activity-related words were presented around the individual speech recognition threshold to increase task difficulty. Our results show that word processing is facilitated in congruent body positions (sleep words: lying down and activity words: standing upright) compared with incongruent body positions, as indicated by a reduced N400 of the event-related potential (ERP) in the congruent condition with the lowest volume. In addition, early sensory components of the ERP (N180 and P280) were enhanced, suggesting that words were also acoustically better understood when the body position was congruent with the semantic meaning of the word. However, the difference in ERPs did not translate to differences on a behavioural level.Our results support the prediction of embodied processing of sleep- and activity-related words. Body position potentially induces a pre-activation of multimodal networks, thereby enhancing the access to the semantic concepts of words related to current the body position. The mutual link between semantic meaning and body-related function could be a key element in explaining influences of cognitive processing on sleep.


Sign in / Sign up

Export Citation Format

Share Document