scholarly journals Performer Experience on a Continuous Keyboard Instrument

2020 ◽  
Vol 44 (2-3) ◽  
pp. 69-91
Author(s):  
Giulio Moro ◽  
Andrew P. McPherson

Abstract On several keyboard instruments the produced sound is not always dependent exclusively on a discrete key-velocity parameter, and minute gestural details can affect the final sonic result. By contrast, variations in articulation beyond velocity have normally no effect on the produced sound when the keyboard controller uses the MIDI standard, used in the vast majority of digital keyboards. In this article, we introduce a novel keyboard-based digital musical instrument that uses continuous readings of key position to control a nonlinear waveguide flute synthesizer with a richer set of interaction gestures than would be possible with a velocity-based keyboard. We then report on the experience of six players interacting with our instrument and reflect on their experience, highlighting the opportunities and challenges that come with continuous key sensing.

2020 ◽  
Vol 31 (2) ◽  
pp. 81-86
Author(s):  
Wido Nager ◽  
Tilla Franke ◽  
Tobias Wagner-Altendorf ◽  
Eckart Altenmüller ◽  
Thomas F. Münte

Abstract. Playing a musical instrument professionally has been shown to lead to structural and functional neural adaptations, making musicians valuable subjects for neuroplasticity research. Here, we follow the hypothesis that specific musical demands further shape neural processing. To test this assumption, we subjected groups of professional drummers, professional woodwind players, and nonmusicians to pure tone sequences and drum sequences in which infrequent anticipations of tones or drum beats had been inserted. Passively listening to these sequences elicited a mismatch negativity to the temporally deviant stimuli which was greater in the musicians for tone series and particularly large for drummers for drum sequences. In active listening conditions drummers more accurately and more quickly detected temporally deviant stimuli.


Letonica ◽  
2020 ◽  
Author(s):  
Māra Grudule

The article gives insight into a specific component of the work of Baltic enlightener Gotthard Friedrich Stender (1714–1796) that has heretofore been almost unexplored — the transfer of German musical traditions to the Latvian cultural space. Even though there are no sources that claim that Stender was a composer himself, and none of his books contain musical notation, the texts that had been translated by Stender and published in the collections “Jaunas ziņģes” (New popular songs, 1774) and “Ziņģu lustes” (The Joy of singing, 1785, 1789) were meant for singing and, possibly, also for solo-singing with the accompaniment of some musical instrument. This is suggested, first, by how the form of the translation corresponds to the original’s form; second, by the directions, oftentimes attached to the text, that indicate the melody; and third, by the genres of the German originals cantata and song. Stender translated several compositions into Latvian including the text of the religious cantata “Der Tod Jesu” (The Death of Jesus, 1755) by composer Karl Heinrich Graun (1754–1759); songs by various composers that were widely known in German society; as well as a collection of songs by the composer Johann Gottlieb Naumann (1741–1801) that, in its original form, was published together with notation and was intended for solo-singing (female vocals) with the accompaniment of a piano. This article reveals the context of German musical life in the second half of the 18th century and explains the role of music as an instrument of education in Baltic-German and Latvian societies.


2018 ◽  
Author(s):  
Gaby Abou Haidar ◽  
Xavier Moreau ◽  
Roy Abi Zeid Daou

Author(s):  
Frank S. Levin

Surfing the Quantum World bridges the gap between in-depth textbooks and typical popular science books on quantum ideas and phenomena. Among its significant features is the description of a host of mind-bending phenomena, such as a quantum object being in two places at once or a certain minus sign being the most consequential in the universe. Much of its first part is historical, starting with the ancient Greeks and their concepts of light, and ending with the creation of quantum mechanics. The second part begins by applying quantum mechanics and its probability nature to a pedagogical system, the one-dimensional box, an analog of which is a musical-instrument string. This is followed by a gentle introduction to the fundamental principles of quantum theory, whose core concepts and symbolic representations are the foundation for most of the subsequent chapters. For instance, it is shown how quantum theory explains the properties of the hydrogen atom and, via quantum spin and Pauli’s Exclusion Principle, how it accounts for the structure of the periodic table. White dwarf and neutron stars are seen to be gigantic quantum objects, while the maximum height of mountains is shown to have a quantum basis. Among the many other topics considered are a variety of interference phenomena, those that display the wave properties of particles like electrons and photons, and even of large molecules. The book concludes with a wide-ranging discussion of interpretational and philosophic issues, introduced in Chapters 14 by entanglement and 15 by Schrödinger’s cat.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Jae Dong Chung ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
Muhammad Akhtar

Abstract A mathematical model is envisioned to discourse the impact of Thompson and Troian slip boundary in the carbon nanotubes suspended nanofluid flow near a stagnation point along an expanding/contracting surface. The water is considered as a base fluid and both types of carbon nanotubes i.e., single-wall (SWCNTs) and multi-wall (MWCNTs) are considered. The flow is taken in a Dacry-Forchheimer porous media amalgamated with quartic autocatalysis chemical reaction. Additional impacts added to the novelty of the mathematical model are the heat generation/absorption and buoyancy effect. The dimensionless variables led the envisaged mathematical model to a physical problem. The numerical solution is then found by engaging MATLAB built-in bvp4c function for non-dimensional velocity, temperature, and homogeneous-heterogeneous reactions. The validation of the proposed mathematical model is ascertained by comparing it with a published article in limiting case. An excellent consensus is accomplished in this regard. The behavior of numerous dimensionless flow variables including solid volume fraction, inertia coefficient, velocity ratio parameter, porosity parameter, slip velocity parameter, magnetic parameter, Schmidt number, and strength of homogeneous/heterogeneous reaction parameters are portrayed via graphical illustrations. Computational iterations for surface drag force are tabulated to analyze the impacts at the stretched surface. It is witnessed that the slip velocity parameter enhances the fluid stream velocity and diminishes the surface drag force. Furthermore, the concentration of the nanofluid flow is augmented for higher estimates of quartic autocatalysis chemical.


Sign in / Sign up

Export Citation Format

Share Document