scholarly journals A Neural Model of Empathic States in Attachment-Based Psychotherapy

2017 ◽  
Vol 1 ◽  
pp. 132-167 ◽  
Author(s):  
David Cittern ◽  
Abbas Edalat

We build on a neuroanatomical model of how empathic states can motivate caregiving behavior, via empathy circuit-driven activation of regions in the hypothalamus and amygdala, which in turn stimulate a mesolimbic–ventral pallidum pathway, by integrating findings related to the perception of pain in self and others. On this basis, we propose a network to capture states of personal distress and (weak and strong forms of) empathic concern, which are particularly relevant for psychotherapists conducting attachment-based interventions. This model is then extended for the case of self-attachment therapy, in which conceptualized components of the self serve as both the source of and target for empathic resonance. In particular, we consider how states of empathic concern involving an other that is perceived as being closely related to the self might enhance the motivation for self-directed bonding (which in turn is proposed to lead the individual toward more compassionate states) in terms of medial prefrontal cortex–mediated activation of these caregiving pathways. We simulate our model computationally and discuss the interplay between the bonding and empathy protocols of the therapy.

2016 ◽  
Vol 37 (7) ◽  
pp. 2512-2527 ◽  
Author(s):  
Weihua Zhao ◽  
Shuxia Yao ◽  
Qin Li ◽  
Yayuan Geng ◽  
Xiaole Ma ◽  
...  

2021 ◽  
pp. 372-419
Author(s):  
Richard E. Passingham

This chapter and the next one consider how to account for the astonishing difference in intelligence between humans and our nearest living ancestors, the great apes. An integrated system that includes the dorsal prefrontal cortex and the parietal association cortex is activated when subjects attempt tests of non-verbal intelligence. It has been suggested that this system might act as a ‘multiple-demand system’ or ‘global workspace’ that can deal with any problem. However, closer examination suggests that the tasks used to support this claim have in common that they involve abstract sequences. These problems can be solved by visual imagery alone. But humans also have the advantage that they also have access to a propositional code. This means that they can solve problems that involve verbal reasoning, as well as being able to form detailed plans for the future. They can also form explicit judgements about themselves, including their perceptions, actions, and memories, and this means that they can represent themselves as individuals. The representation of the self depends in part on tissue in the medial prefrontal cortex (PF).


2014 ◽  
Vol 10 (8) ◽  
pp. 1054-1060 ◽  
Author(s):  
Claudia Civai ◽  
Carlo Miniussi ◽  
Raffaella I. Rumiati

2019 ◽  
Author(s):  
Claudio Toro-Serey ◽  
Sean M. Tobyne ◽  
Joseph T. McGuire

AbstractRegions of human medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) are part of the default network (DN), and additionally are implicated in diverse cognitive functions ranging from autobiographical memory to subjective valuation. Our ability to interpret the apparent co-localization of task-related effects with DN-regions is constrained by a limited understanding of the individual-level heterogeneity in mPFC/PCC functional organization. Here we used cortical surface-based meta-analysis to identify a parcel in human PCC that was more strongly associated with the DN than with valuation effects. We then used resting-state fMRI data and a data-driven network analysis algorithm, spectral partitioning, to partition mPFC and PCC into “DN” and “non-DN” subdivisions in individual participants (n = 100 from the Human Connectome Project). The spectral partitioning algorithm identified individual-level cortical subdivisions that varied markedly across individuals, especially in mPFC, and were reliable across test/retest datasets. Our results point toward new strategies for assessing whether distinct cognitive functions engage common or distinct mPFC subregions at the individual level.HighlightsThe topography of Default Network cortical regions varies across individuals.A community detection algorithm, spectral partitioning, was applied to rs-fMRI data.The algorithm identified individualized Default Network regions in mPFC and PCC.Default Network topography varied across individuals in mPFC, moreso than in PCC.Overlap of task effects with DN regions should be assessed at the individual level.


2007 ◽  
Vol 19 (6) ◽  
pp. 935-944 ◽  
Author(s):  
Arnaud D'Argembeau ◽  
Perrine Ruby ◽  
Fabienne Collette ◽  
Christian Degueldre ◽  
Evelyne Balteau ◽  
...  

The medial prefrontal cortex (MPFC) appears to play a prominent role in two fundamental aspects of social cognition, that is, self-referential processing and perspective taking. However, it is currently unclear whether the same or different regions of the MPFC mediate these two interdependent processes. This functional magnetic resonance imaging study sought to clarify the issue by manipulating both dimensions in a factorial design. Participants judged the extent to which trait adjectives described their own personality (e.g., “Are you sociable?”) or the personality of a close friend (e.g., “Is Caroline sociable?”) and were also asked to put themselves in the place of their friend (i.e., to take a third-person perspective) and estimate how this person would judge the adjectives, with the target of the judgments again being either the self (e.g., “According to Caroline, are you sociable?”) or the other person (e.g., “According to Caroline, is she sociable?”). We found that self-referential processing (i.e., judgments targeting the self vs. the other person) yielded activation in the ventral and dorsal anterior MPFC, whereas perspective taking (i.e., adopting the other person's perspective, rather than one's own, when making judgments) resulted in activation in the posterior dorsal MPFC; the interaction between the two dimensions yielded activation in the left dorsal MPFC. These findings show that self-referential processing and perspective taking recruit distinct regions of the MPFC and suggest that the left dorsal MPFC may be involved in decoupling one's own from other people's perspectives on the self.


2021 ◽  
Author(s):  
Camill Burden ◽  
Ryan C. Leach ◽  
Allison M. Sklenar ◽  
Pauline Urban Levy ◽  
Andrea N. Frankenstein ◽  
...  

2009 ◽  
Vol 364 (1521) ◽  
pp. 1291-1300 ◽  
Author(s):  
Aron K. Barbey ◽  
Frank Krueger ◽  
Jordan Grafman

We propose that counterfactual representations for reasoning about the past or predicting the future depend on structured event complexes (SECs) in the human prefrontal cortex (PFC; ‘What would happen if X were performed in the past or enacted in the future?’). We identify three major categories of counterfactual thought (concerning action versus inaction, the self versus other and upward versus downward thinking) and propose that each form of inference recruits SEC representations in distinct regions of the medial PFC. We develop a process model of the regulatory functions these representations serve and draw conclusions about the importance of SECs for explaining the past and predicting the future.


2012 ◽  
Vol 136 (1-2) ◽  
pp. e1-e11 ◽  
Author(s):  
Cédric Lemogne ◽  
Pauline Delaveau ◽  
Maxime Freton ◽  
Sophie Guionnet ◽  
Philippe Fossati

Sign in / Sign up

Export Citation Format

Share Document