Magnifying the View of the Hand Changes Its Cortical Representation. A Transcranial Magnetic Stimulation Study

2018 ◽  
Vol 30 (8) ◽  
pp. 1098-1107 ◽  
Author(s):  
Elisabetta Ambron ◽  
Nicole White ◽  
Olufunsho Faseyitan ◽  
Sudha K. Kessler ◽  
Jared Medina ◽  
...  

Changes in the perceived size of a body part using magnifying lenses influence tactile perception and pain. We investigated whether the visual magnification of one's hand also influences the motor system, as indexed by transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs). In Experiment 1, MEPs were measured while participants gazed at their hand with and without magnification of the hand. MEPs were significantly larger when participants gazed at a magnified image of their hand. In Experiment 2, we demonstrated that this effect is specific to the hand that is visually magnified. TMS of the left motor cortex did not induce an increase of MEPs when participants looked at their magnified left hand. Experiment 3 was performed to determine if magnification altered the topography of the cortical representation of the hand. To that end, a 3 × 5 grid centered on the cortical hot spot (cortical location at which a motor threshold is obtained with the lowest level of stimulation) was overlaid on the participant's MRI image, and all 15 sites in the grid were stimulated with and without magnification of the hand. We confirmed the increase in the MEPs at the hot spot with magnification and demonstrated that MEPs significantly increased with magnification at sites up to 16.5 mm from the cortical hot spot. In Experiment 4, we used paired-pulse TMS to measure short-interval intracortical inhibition and intracortical facilitation. Magnification was associated with an increase in short-interval intracortical inhibition. These experiments demonstrate that the visual magnification of one's hand induces changes in motor cortex excitability and generates a rapid remapping of the cortical representation of the hand that may, at least in part, be mediated by changes in short-interval intracortical inhibition.

NeuroImage ◽  
2019 ◽  
Vol 203 ◽  
pp. 116194 ◽  
Author(s):  
Jaakko O. Nieminen ◽  
Lari M. Koponen ◽  
Niko Mäkelä ◽  
Victor Hugo Souza ◽  
Matti Stenroos ◽  
...  

2010 ◽  
Vol 103 (1) ◽  
pp. 511-518 ◽  
Author(s):  
R. F. H. Cash ◽  
U. Ziemann ◽  
K. Murray ◽  
G. W. Thickbroom

In human motor cortex transcranial magnetic stimulation (TMS) has been used to identify short-interval intracortical inhibition (SICI) corresponding to γ-aminobutyric acid type A (GABAA) effects and long-interval intracortical inhibition (LICI) and the cortical silent period (SP) corresponding to postsynaptic GABAB effects. Presynaptic GABAB effects, corresponding to disinhibition, can also be identified with TMS and have been shown to be acting during LICI by measuring SICI after a suprathreshold priming stimulus (PS). The duration of disinhibition is not certain and, guided by studies in experimental preparations, we hypothesized that it may be longer-lasting than postsynaptic inhibition, leading to a period of late cortical disinhibition and consequently a net increase in corticospinal excitability. We tested this first by measuring the motor-evoked potential (MEP) to a test stimulus (TS), delivered after a PS at interpulse intervals (IPIs) ≤300 ms that encompassed the period of PS-induced LICI and its aftermath. MEP amplitude was initially decreased, but then increased at IPIs of 190–210 ms, reaching 160 ± 17% of baseline 200 ms after PS ( P < 0.05). SP duration was 181 ± 5 ms. A second experiment established that the onset of the later period of increased excitability correlated with PS intensity ( r2 = 0.99) and with the duration of the SP ( r2 = 0.99). The third and main experiment demonstrated that SICI was significantly reduced in strength at all IPIs ≤220 ms after PS. We conclude that TMS-induced LICI is associated with a period of disinhibition that is at first masked by LICI, but that outlasts LICI and gives rise to a period during which disinhibition predominates and net excitability is raised. Identification of this late period of disinhibition in human motor cortex may provide an opportunity to explore or modulate the behavior of excitatory networks at a time when inhibitory effects are restrained.


2019 ◽  
Author(s):  
Cécilia Neige ◽  
Dylan Rannaud Monany ◽  
Cathy M. Stinear ◽  
Winston D. Byblow ◽  
Charalambos Papaxanthis ◽  
...  

AbstractMotor imagery (MI) is the mental simulation of an action without any apparent muscular contraction. By means of transcranial magnetic stimulation, few studies revealed a decrease of short-interval intracortical inhibition (SICI) within the primary motor cortex. However, this decrease is ambiguous, as one would expect greater inhibition during MI to prevent overt motor output. The current study investigated the extent of SICI modulation during MI through a methodological and a conceptual reconsideration of i) the importance of parameters to assess SICI (Exp.1) and ii) the inhibitory process within the primary motor cortex as an inherent feature of MI (Exp.2). Participants performed two tasks: 1) rest and 2) imagery of isometric abduction of the right index finger. Using transcranial magnetic stimulation, motor evoked potentials were elicited in the right first dorsal interosseous muscle. An adaptive threshold-hunting paradigm was used, where the stimulus intensity required to maintain a fixed motor evoked potential amplitude was quantified. To test SICI, we conditioned the test stimulus with a conditioning stimulus (CS) of different intensities. Results revealed an Intensity by Task interaction showing that SICI decreased during MI as compared to rest only for the higher CS intensity (Exp.1). At the lowest CS intensities, a Task main effect revealed that SICI increased during MI (Exp.2). SICI modulation during MI depends critically on the CS intensity. By optimising CS intensity, we have shown that SICI circuits may increase during MI, revealing a potential mechanism to prevent the production of a movement while the motor system is activated.HighlightsExcitatory and inhibitory neural processes interact during motor imagery, as the motor regions are activated but no movement is produced.The current study investigated the extent of short interval intracortical inhibition modulation (SICI) during motor imagery.When using optimal settings, SICI increased during motor imagery, likely to prevent the production of an overt movement.


Author(s):  
Julianne Baarbé ◽  
Michael Vesia ◽  
Matt Brown ◽  
Karlo J. Lizarraga ◽  
Carolyn A Gunraj ◽  
...  

The interconnection of the angular gyrus of right posterior parietal cortex (PPC) and the left motor cortex (LM1) is essential for goal-directed hand movements. Previous work with transcranial magnetic stimulation (TMS) showed that right PPC stimulation increases LM1 excitability but right PPC followed by left PPC-LM1 stimulation (LPPC-LM1) inhibits LM1 corticospinal output compared to LPPC-LM1 alone. It is not clear if right PPC-mediated inhibition of LPPC-LM1 is due to inhibition of left PPC or to combined effects of right and left PPC stimulation on LM1 excitability. We used paired-pulse TMS to study the extent to which combined right and left PPC stimulation, targeting the angular gyri, influences LM1 excitability. We tested 16 healthy subjects in five paired-pulsed TMS experiments using MRI-guided neuronavigation to target the angular gyri within PPC. We tested the effects of different right angular gyrus (RAG) and LM1 stimulation intensities on the influence of RAG on LM1 and on influence of left angular gyrus (LAG) on LM1 (LAG-LM1). We then tested the effects of RAG and LAG stimulation on LM1 short-interval intracortical facilitation(SICF), short-interval intracortical inhibition(SICI) and long-interval intracortical inhibition(LICI). The results revealed that RAG facilitated LM1, inhibited SICF and inhibited LAG-LM1. Combined RAG-LAG stimulation did not affect SICI but increased LICI. These experiments suggest that RAG-mediated inhibition of LAG-LM1 is related to inhibition of early I-wave activity and enhancement of GABAB receptor-mediated inhibition in LM1. The influence of RAG on LM1 likely involves ipsilateral connections from LAG to LM1 and heterotopic connections from RAG to LM1.


Author(s):  
Petyo Nikolov ◽  
Johanna V. Zimmermann ◽  
Shady S. Hassan ◽  
Philipp Albrecht ◽  
Alfons Schnitzler ◽  
...  

AbstractConditioning transcranial magnetic stimulation (TMS) with subthreshold conditioning stimulus followed by supra-threshold test stimulus at inter-stimulus intervals (ISI) of 1–5 ms results in inhibition (SICI), while ISI at 10–15 ms results in facilitation (ICF). One concerning issue, applying ICF/SICI protocols on patients is the substantial protocol variability. Here, we hypothesized that increasing the number of CS could result in more robust ICF/SICI protocols. Twenty healthy subjects participated in the study. Motor-evoked potentials (MEP) were obtained from conditioning TMS with a varying number of conditioning stimuli in 3, 4, 10, and 15 ms ISI over the primary motor cortex. MEP amplitudes were then compared to examine excitability. TMS with 3, 5, and 7 conditioning stimuli but not with one conditioning stimulus induced ICF. Moreover, 10 ms ISI produced stronger ICF than 15 ms ISI. Significant SICI was only induced with one conditioning stimulus. Besides, 3 ms ISI resulted in stronger SICI than 4 ms ISI. Only a train of conditioning stimuli induced stable ICF and may be more advantageous than the classical paired pulse ICF paradigm.


2014 ◽  
Vol 111 (1) ◽  
pp. 26-35 ◽  
Author(s):  
Ryosuke Tsutsumi ◽  
Ritsuko Hanajima ◽  
Yasuo Terao ◽  
Yuichiro Shirota ◽  
Shinya Ohminami ◽  
...  

Corpus callosum connects the bilateral primary motor cortices (M1s) and plays an important role in motor control. Using the paired-pulse transcranial magnetic stimulation (TMS) paradigm, we can measure interhemispheric inhibition (IHI) and interhemispheric facilitation (IHF) as indexes of the interhemispheric interactions in humans. We investigated how quadripulse transcranial magnetic stimulation (QPS), one form of repetitive TMS (rTMS), on M1 affects the contralateral M1 and the interhemispheric interactions. QPS is able to induce bidirectional plastic changes in M1 depending on the interstimulus intervals (ISIs) of TMS pulses: long-term potentiation (LTP)-like effect by QPS-5 protocol, and long-term depression-like effect by QPS-50, whose numbers indicate the ISI (ms). Twelve healthy subjects were enrolled. We applied QPS over the left M1 and recorded several parameters before and 30 min after QPS. QPS-5, which increased motor-evoked potentials (MEPs) induced by left M1 activation, also increased MEPs induced by right M1 activation. Meanwhile, QPS-50, which decreased MEPs elicited by left M1 activation, did not induce any significant changes in MEPs elicited by right M1 activation. None of the resting motor threshold, active motor threshold, short-interval intracortical inhibition, long-interval intracortical inhibition, intracortical facilitation, and short-interval intracortical inhibition in right M1 were affected by QPS. IHI and IHF from left to right M1 significantly increased after left M1 QPS-5. The degree of left first dorsal interosseous MEP amplitude change by QPS-5 significantly correlated with the degree of IHF change. We suppose that the LTP-like effect on the contralateral M1 may be produced by some interhemispheric interactions through the corpus callosum.


2021 ◽  
Vol 11 (4) ◽  
pp. 432
Author(s):  
Fiorenzo Moscatelli ◽  
Antonietta Messina ◽  
Anna Valenzano ◽  
Vincenzo Monda ◽  
Monica Salerno ◽  
...  

Transcranial magnetic stimulation, since its introduction in 1985, has brought important innovations to the study of cortical excitability as it is a non-invasive method and, therefore, can be used both in healthy and sick subjects. Since the introduction of this cortical stimulation technique, it has been possible to deepen the neurophysiological aspects of motor activation and control. In this narrative review, we want to provide a brief overview regarding TMS as a tool to investigate changes in cortex excitability in athletes and highlight how this tool can be used to investigate the acute and chronic responses of the motor cortex in sport science. The parameters that could be used for the evaluation of cortical excitability and the relative relationship with motor coordination and muscle fatigue, will be also analyzed. Repetitive physical training is generally considered as a principal strategy for acquiring a motor skill, and this process can elicit cortical motor representational changes referred to as use-dependent plasticity. In training settings, physical practice combined with the observation of target movements can enhance cortical excitability and facilitate the process of learning. The data to date suggest that TMS is a valid technique to investigate the changes in motor cortex excitability in trained and untrained subjects. Recently, interest in the possible ergogenic effect of non-invasive brain stimulation in sport is growing and therefore in the future it could be useful to conduct new experiments to evaluate the impact on learning and motor performance of these techniques.


Sign in / Sign up

Export Citation Format

Share Document