Understanding Parkinsonian Handwriting Through a Computational Model of Basal Ganglia

2008 ◽  
Vol 20 (10) ◽  
pp. 2491-2525 ◽  
Author(s):  
Garipelli Gangadhar ◽  
Denny Joseph ◽  
V. Srinivasa Chakravarthy

Handwriting in Parkinson's disease (PD) is typically characterized by micrographia, jagged line contour, and unusual fluctuations in pen tip velocity. Although PD handwriting features have been used for diagnostics, they are not based on a signaling model of basal ganglia (BG). In this letter, we present a computational model of handwriting generation that highlights the role of BG. When PD conditions like reduced dopamine and altered dynamics of the subthalamic nucleus and globus pallidus externa subsystems are simulated, the handwriting produced by the model manifested characteristic PD handwriting distortions like micrographia and velocity fluctuations. Our approach to PD modeling is in tune with the perspective that PD is a dynamic disease.

2020 ◽  
Author(s):  
Leonardo Ceravolo ◽  
Sascha Frühholz ◽  
Jordan Pierce ◽  
Didier Grandjean ◽  
Julie Péron

AbstractUntil recently, brain networks underlying emotional voice prosody decoding and processing were focused on modulations in primary and secondary auditory, ventral frontal and prefrontal cortices, and the amygdala. Growing interest for a specific role of the basal ganglia and cerebellum was recently brought into the spotlight. In the present study, we aimed at characterizing the role of such subcortical brain regions in vocal emotion processing, at the level of both brain activation and functional and effective connectivity, using high resolution functional magnetic resonance imaging. Variance explained by low-level acoustic parameters (fundamental frequency, voice energy) was also modelled. Wholebrain data revealed expected contributions of the temporal and frontal cortices, basal ganglia and cerebellum to vocal emotion processing, while functional connectivity analyses highlighted correlations between basal ganglia and cerebellum, especially for angry voices. Seed-to-seed and seed-to-voxel effective connectivity revealed direct connections within the basal ganglia ̶ especially between the putamen and external globus pallidus ̶ and between the subthalamic nucleus and the cerebellum. Our results speak in favour of crucial contributions of the basal ganglia, especially the putamen, external globus pallidus and subthalamic nucleus, and several cerebellar lobules and nuclei for an efficient decoding of and response to vocal emotions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leonardo Ceravolo ◽  
Sascha Frühholz ◽  
Jordan Pierce ◽  
Didier Grandjean ◽  
Julie Péron

AbstractUntil recently, brain networks underlying emotional voice prosody decoding and processing were focused on modulations in primary and secondary auditory, ventral frontal and prefrontal cortices, and the amygdala. Growing interest for a specific role of the basal ganglia and cerebellum was recently brought into the spotlight. In the present study, we aimed at characterizing the role of such subcortical brain regions in vocal emotion processing, at the level of both brain activation and functional and effective connectivity, using high resolution functional magnetic resonance imaging. Variance explained by low-level acoustic parameters (fundamental frequency, voice energy) was also modelled. Wholebrain data revealed expected contributions of the temporal and frontal cortices, basal ganglia and cerebellum to vocal emotion processing, while functional connectivity analyses highlighted correlations between basal ganglia and cerebellum, especially for angry voices. Seed-to-seed and seed-to-voxel effective connectivity revealed direct connections within the basal ganglia—especially between the putamen and external globus pallidus—and between the subthalamic nucleus and the cerebellum. Our results speak in favour of crucial contributions of the basal ganglia, especially the putamen, external globus pallidus and subthalamic nucleus, and several cerebellar lobules and nuclei for an efficient decoding of and response to vocal emotions.


2017 ◽  
Author(s):  
Amin Mirzaei ◽  
Arvind Kumar ◽  
Daniel Leventhal ◽  
Nicolas Mallet ◽  
Ad Aertsen ◽  
...  

AbstractBrief epochs of beta oscillations have been implicated in sensorimotor control in the basal ganglia of task-performing healthy animals. However, which neural processes underlie their generation and how they are affected by sensorimotor processing remains unclear. To determine the mechanisms underlying transient beta oscillations in the local field potential (LFP), we combined computational modeling of the subthalamo-pallidal network for the generation of beta oscillations with realistic stimulation patterns derived from single unit data. The single unit data were recorded from different basal ganglia subregions in rats performing a cued choice task. In the recordings we found distinct firing patterns in the striatum, globus pallidus and subthalamic nucleus related to sensory and motor events during the behavioral task. Using these firing patterns to generate realistic inputs to our network model lead to transient beta oscillations with the same time course as the rat LFP data. In addition, our model can account for further non-intuitive aspects of beta modulation, including beta phase resets following sensory cues and correlations with reaction time. Overall, our model can explain how the combination of temporally regulated sensory responses of the subthalamic nucleus, ramping activity of the subthalamic nucleus, and movement-related activity of the globus pallidus, leads to transient beta oscillations during behavior.Significance StatementTransient beta oscillations emerge in the normal functioning cortico-basal ganglia loop during behavior. In this work we employ a unique approach connecting a computational model closely with experimental data. In this way we achieve a simulation environment for our model that mimics natural input patterns in awake behaving animals. Using this approach we demonstrate that a computational model for beta oscillations in Parkinson’s disease can also account for complex patterns of transient beta oscillations in healthy animals. Therefore, we propose that transient beta oscillations in healthy animals share the same mechanism with pathological beta oscillations in Parkinson’s disease. This important result connects functional and pathological roles of beta oscillations in the basal ganglia.


2020 ◽  
Author(s):  
Seyed-Mojtaba Alavi ◽  
Amin Mirzaei ◽  
Alireza Valizadeh ◽  
Reza Ebrahimpour

Abstract Parkinson’s disease (PD) is associated with abnormal b band oscillations (13-30 Hz) in the cortico-basal ganglia circuits.Abnormally increased striato-pallidal inhibition and strengthening the synaptic coupling between subthalamic nucleus (STN)and globus pallidus externa (GPe), due to the loss of dopamine, are accounted as the potential sources of b oscillations in thebasal ganglia. Deep brain stimulation (DBS) of the basal ganglia subregions is known as a way to reduce the pathological boscillations and motor deficits related to PD. Despite the success of the DBS, its underlying mechanism is poorly understoodand, there is controversy about the inhibitory or excitatory role of the DBS in the literature. Here, we utilized a computationalnetwork model of basal ganglia which consists STN, GPe, globus pallidus interna (GPi), and thalamus neuronal population.This model can capture healthy and pathological b oscillations as what has been observed in experimental studies. Using thismodel, we investigated the effect of DBS to understand whether its effect is excitatory or inhibitory. Our results show that theexcitatory DBS (EDBS) is able to quench the pathological synchrony and b oscillations, while, applying inhibitory DBS (IDBS)failed to quench the PD signs. In addition, the EDBS ameliorated the thalamic activity related to tremor in the model, while,the IDBS outperformed. However, with the help of the model results, we conclude that the effect of the DBS on its target isexcitatory


Author(s):  
Charles J. Wilson

The subthalamo-pallidal system constitutes the second layer of circuitry in the basal ganglia, downstream of the striatum. It consists of four nuclei. Two of them, the external segment of the globus pallidus (GPe) and subthalamic nucleus (STN), make their connections primarily within the basal ganglia. The others, the internal segment of the globus pallidus (GPi) and the substantia nigra pars reticulata (SNr), are the output nuclei of the basal ganglia. Collectively, their axons distribute collaterals to all the targets of the basal ganglia. Rare interneurons have been reported in each of them from studies of Golgi-stained preparations, but they have not so far been confirmed using more modern methods. The circuit as described here is based primarily on studies of the axonal arborizations of neurons stained individually by intracellular or juxtacellular labeling.


2018 ◽  
Vol 25 (1) ◽  
pp. 48-64 ◽  
Author(s):  
Tora Bonnevie ◽  
Kareem A. Zaghloul

How do we decide what we do? This is the essence of action control, the process of selecting the most appropriate response among multiple possible choices. Suboptimal action control can involve a failure to initiate or adapt actions, or conversely it can involve making actions impulsively. There has been an increasing focus on the specific role of the subthalamic nucleus (STN) in action control. This has been fueled by the clinical relevance of this basal ganglia nucleus as a target for deep brain stimulation (DBS), primarily in Parkinson’s disease but also in obsessive-compulsive disorder. The context of DBS has opened windows to study STN function in ways that link neuroscientific and clinical fields closely together, contributing to an exceptionally high level of two-way translation. In this review, we first outline the role of the STN in both motor and nonmotor action control, and then discuss how these functions might be implemented by neuronal activity in the STN. Gaining a better understanding of these topics will not only provide important insights into the neurophysiology of action control but also the pathophysiological mechanisms relevant for several brain disorders and their therapies.


2007 ◽  
Vol 98 (2) ◽  
pp. 821-834 ◽  
Author(s):  
Matthew B. Spraker ◽  
Hong Yu ◽  
Daniel M. Corcos ◽  
David E. Vaillancourt

The basal ganglia-thalamo-cortical loop is an important neural circuit that regulates motor control. A key parameter that the nervous system regulates is the level of force to exert against an object during tasks such as grasping. Previous studies indicate that the basal ganglia do not exhibit increased activity with increasing amplitude of force, although these conclusions are based mainly on the putamen. The present study used functional magnetic resonance imaging to investigate which regions in the basal ganglia, thalamus, and motor cortex display increased activity when producing pinch-grip contractions of increasing force amplitude. We found that the internal portion of the globus pallidus (GPi) and subthalamic nucleus (STN) had a positive increase in percent signal change with increasing force, whereas the external portion of the globus pallidus, anterior putamen, posterior putamen, and caudate did not. In the thalamus we found that the ventral thalamic regions increase in percent signal change and activation volume with increasing force amplitude. The contralateral and ipsilateral primary motor/somatosensory (M1/S1) cortices had a positive increase in percent signal change and activation volume with increasing force amplitude, and the contralateral M1/S1 had a greater increase in percent signal change and activation volume than the ipsilateral side. We also found that deactivation did not change across force in the motor cortex and basal ganglia, but that the ipsilateral M1/S1 had greater deactivation than the contralateral M1/S1. Our findings provide direct evidence that GPi and STN regulate the amplitude of force output. These findings emphasize the heterogeneous role of individual nuclei of the basal ganglia in regulating specific parameters of motor output.


Nature ◽  
10.1038/23281 ◽  
1999 ◽  
Vol 400 (6745) ◽  
pp. 677-682 ◽  
Author(s):  
Dietmar Plenz ◽  
Stephen T. Kital

2004 ◽  
Vol 92 (5) ◽  
pp. 3069-3084 ◽  
Author(s):  
H. Kita ◽  
A. Nambu ◽  
K. Kaneda ◽  
Y. Tachibana ◽  
M. Takada

The neurons in the external segment of the pallidum (GPe) in awake animals maintain a high level of firing activity. The level and pattern of the activity change with the development of basal ganglia disorders including parkinsonism and hemiballism. The GPe projects to most of the nuclei in the basal ganglia. Thus exploring the mechanisms controlling the firing activity is essential for understanding basal ganglia function in normal and pathological conditions. To explore the role of ionotropic glutamatergic and GABAergic inputs to the GPe, unit recordings combined with local injections of receptor antagonists were performed in awake monkeys. Observations on the effects of local application of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate antagonist 1,2,3,4-tetrahydro-6-nitro-2, 3-dioxo-benzo[f]quinoxaline-7-sulfonamide, the N-methyl-d-aspartic acid (NMDA) antagonist 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid, and the GABAA antagonist gabazine as well as the effects of muscimol blockade of the subthalamic nucleus on the spontaneous firing rate, firing patterns, and cortical stimulation induced responses in the GPe suggested the following: sustained glutamatergic and GABAergic inputs control the level of the spontaneous firing of GPe neurons; both AMPA/kainate and NMDA receptors are activated by glutamatergic inputs; some GPe neurons receive glutamatergic inputs originating from areas other than the subthalamic nucleus; no GPe neurons became silent after a combined application of glutamate and GABA antagonists, suggesting that GPe neurons have intrinsic properties or nonionotropic glutamatergic tonic inputs that sustain a fast oscillatory firing or a combination of a fast and a slow oscillatory firing in GPe neurons.


Sign in / Sign up

Export Citation Format

Share Document