A Spike-Timing-Based Integrated Model for Pattern Recognition

2013 ◽  
Vol 25 (2) ◽  
pp. 450-472 ◽  
Author(s):  
Jun Hu ◽  
Huajin Tang ◽  
K. C. Tan ◽  
Haizhou Li ◽  
Luping Shi

During the past few decades, remarkable progress has been made in solving pattern recognition problems using networks of spiking neurons. However, the issue of pattern recognition involving computational process from sensory encoding to synaptic learning remains underexplored, as most existing models or algorithms target only part of the computational process. Furthermore, many learning algorithms proposed in the literature neglect or pay little attention to sensory information encoding, which makes them incompatible with neural-realistic sensory signals encoded from real-world stimuli. By treating sensory coding and learning as a systematic process, we attempt to build an integrated model based on spiking neural networks (SNNs), which performs sensory neural encoding and supervised learning with precisely timed sequences of spikes. With emerging evidence of precise spike-timing neural activities, the view that information is represented by explicit firing times of action potentials rather than mean firing rates has been receiving increasing attention. The external sensory stimulation is first converted into spatiotemporal patterns using a latency-phase encoding method and subsequently transmitted to the consecutive network for learning. Spiking neurons are trained to reproduce target signals encoded with precisely timed spikes. We show that when a supervised spike-timing-based learning is used, different spatiotemporal patterns are recognized by different spike patterns with a high time precision in milliseconds.

2008 ◽  
Vol 20 (4) ◽  
pp. 974-993 ◽  
Author(s):  
Arunava Banerjee ◽  
Peggy Seriès ◽  
Alexandre Pouget

Several recent models have proposed the use of precise timing of spikes for cortical computation. Such models rely on growing experimental evidence that neurons in the thalamus as well as many primary sensory cortical areas respond to stimuli with remarkable temporal precision. Models of computation based on spike timing, where the output of the network is a function not only of the input but also of an independently initializable internal state of the network, must, however, satisfy a critical constraint: the dynamics of the network should not be sensitive to initial conditions. We have previously developed an abstract dynamical system for networks of spiking neurons that has allowed us to identify the criterion for the stationary dynamics of a network to be sensitive to initial conditions. Guided by this criterion, we analyzed the dynamics of several recurrent cortical architectures, including one from the orientation selectivity literature. Based on the results, we conclude that under conditions of sustained, Poisson-like, weakly correlated, low to moderate levels of internal activity as found in the cortex, it is unlikely that recurrent cortical networks can robustly generate precise spike trajectories, that is, spatiotemporal patterns of spikes precise to the millisecond timescale.


2009 ◽  
Vol 19 (04) ◽  
pp. 295-308 ◽  
Author(s):  
SAMANWOY GHOSH-DASTIDAR ◽  
HOJJAT ADELI

Most current Artificial Neural Network (ANN) models are based on highly simplified brain dynamics. They have been used as powerful computational tools to solve complex pattern recognition, function estimation, and classification problems. ANNs have been evolving towards more powerful and more biologically realistic models. In the past decade, Spiking Neural Networks (SNNs) have been developed which comprise of spiking neurons. Information transfer in these neurons mimics the information transfer in biological neurons, i.e., via the precise timing of spikes or a sequence of spikes. To facilitate learning in such networks, new learning algorithms based on varying degrees of biological plausibility have also been developed recently. Addition of the temporal dimension for information encoding in SNNs yields new insight into the dynamics of the human brain and could result in compact representations of large neural networks. As such, SNNs have great potential for solving complicated time-dependent pattern recognition problems because of their inherent dynamic representation. This article presents a state-of-the-art review of the development of spiking neurons and SNNs, and provides insight into their evolution as the third generation neural networks.


2021 ◽  
pp. 1-25
Author(s):  
Jiangrong Shen ◽  
Jian K. Liu ◽  
Yueming Wang

Abstract Our real-time actions in everyday life reflect a range of spatiotemporal dynamic brain activity patterns, the consequence of neuronal computation with spikes in the brain. Most existing models with spiking neurons aim at solving static pattern recognition tasks such as image classification. Compared with static features, spatiotemporal patterns are more complex due to their dynamics in both space and time domains. Spatiotemporal pattern recognition based on learning algorithms with spiking neurons therefore remains challenging. We propose an end-to-end recurrent spiking neural network model trained with an algorithm based on spike latency and temporal difference backpropagation. Our model is a cascaded network with three layers of spiking neurons where the input and output layers are the encoder and decoder, respectively. In the hidden layer, the recurrently connected neurons with transmission delays carry out high-dimensional computation to incorporate the spatiotemporal dynamics of the inputs. The test results based on the data sets of spiking activities of the retinal neurons show that the proposed framework can recognize dynamic spatiotemporal patterns much better than using spike counts. Moreover, for 3D trajectories of a human action data set, the proposed framework achieves a test accuracy of 83.6% on average. Rapid recognition is achieved through the learning methodology–based on spike latency and the decoding process using the first spike of the output neurons. Taken together, these results highlight a new model to extract information from activity patterns of neural computation in the brain and provide a novel approach for spike-based neuromorphic computing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emily T. Wood ◽  
Kaitlin K. Cummings ◽  
Jiwon Jung ◽  
Genevieve Patterson ◽  
Nana Okada ◽  
...  

AbstractSensory over-responsivity (SOR), extreme sensitivity to or avoidance of sensory stimuli (e.g., scratchy fabrics, loud sounds), is a highly prevalent and impairing feature of neurodevelopmental disorders such as autism spectrum disorders (ASD), anxiety, and ADHD. Previous studies have found overactive brain responses and reduced modulation of thalamocortical connectivity in response to mildly aversive sensory stimulation in ASD. These findings suggest altered thalamic sensory gating which could be associated with an excitatory/inhibitory neurochemical imbalance, but such thalamic neurochemistry has never been examined in relation to SOR. Here we utilized magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging to examine the relationship between thalamic and somatosensory cortex inhibitory (gamma-aminobutyric acid, GABA) and excitatory (glutamate) neurochemicals with the intrinsic functional connectivity of those regions in 35 ASD and 35 typically developing pediatric subjects. Although there were no diagnostic group differences in neurochemical concentrations in either region, within the ASD group, SOR severity correlated negatively with thalamic GABA (r = −0.48, p < 0.05) and positively with somatosensory glutamate (r = 0.68, p < 0.01). Further, in the ASD group, thalamic GABA concentration predicted altered connectivity with regions previously implicated in SOR. These variations in GABA and associated network connectivity in the ASD group highlight the potential role of GABA as a mechanism underlying individual differences in SOR, a major source of phenotypic heterogeneity in ASD. In ASD, abnormalities of the thalamic neurochemical balance could interfere with the thalamic role in integrating, relaying, and inhibiting attention to sensory information. These results have implications for future research and GABA-modulating pharmacologic interventions.


2015 ◽  
Vol 25 (07) ◽  
pp. 1540005
Author(s):  
Ilya Prokin ◽  
Ivan Tyukin ◽  
Victor Kazantsev

The work investigates the influence of spike-timing dependent plasticity (STDP) mechanisms on the dynamics of two synaptically coupled neurons driven by additive external noise. In this setting, the noise signal models synaptic inputs that the pair receives from other neurons in a larger network. We show that in the absence of STDP feedbacks the pair of neurons exhibit oscillations and intermittent synchronization. When the synapse connecting the neurons is supplied with a phase selective feedback mechanism simulating STDP, induced dynamics of spikes in the coupled system resembles a phase locked mode with time lags between spikes oscillating about a specific value. This value, as we show by extensive numerical simulations, can be set arbitrary within a broad interval by tuning parameters of the STDP feedback.


Author(s):  
Malu Zhang ◽  
Hong Qu ◽  
Jianping Li ◽  
Ammar Belatreche ◽  
Xiurui Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document