The Support Feature Machine: Classification with the Least Number of Features and Application to Neuroimaging Data

2013 ◽  
Vol 25 (6) ◽  
pp. 1548-1584 ◽  
Author(s):  
Sascha Klement ◽  
Silke Anders ◽  
Thomas Martinetz

By minimizing the zero-norm of the separating hyperplane, the support feature machine (SFM) finds the smallest subspace (the least number of features) of a data set such that within this subspace, two classes are linearly separable without error. This way, the dimensionality of the data is more efficiently reduced than with support vector–based feature selection, which can be shown both theoretically and empirically. In this letter, we first provide a new formulation of the previously introduced concept of the SFM. With this new formulation, classification of unbalanced and nonseparable data is straightforward, which allows using the SFM for feature selection and classification in a large variety of different scenarios. To illustrate how the SFM can be used to identify both the smallest subset of discriminative features and the total number of informative features in biological data sets we apply repetitive feature selection based on the SFM to a functional magnetic resonance imaging data set. We suggest that these capabilities qualify the SFM as a universal method for feature selection, especially for high-dimensional small-sample-size data sets that often occur in biological and medical applications.

2021 ◽  
Vol 24 ◽  
pp. 45-52
Author(s):  
Jana Busa ◽  
Inese Polaka

The study focuses on the analysis of biological data containing information on the number of genome sequences of intestinal microbiome bacteria before and after antibiotic use. The data have high dimensionality (bacterial taxa) and a small number of records, which is typical of bioinformatics data. Classification models induced on data sets like this usually are not stable and the accuracy metrics have high variance. The aim of the study is to create a preprocessing workflow and a classification model that can perform the most accurate classification of the microbiome into groups before and after the use of antibiotics and lessen the variability of accuracy measures of the classifier. To evaluate the accuracy of the model, measures of the area under the ROC curve and the overall accuracy of the classifier were used. In the experiments, the authors examined how classification results were affected by feature selection and increased size of the data set.


2019 ◽  
Vol 47 (3) ◽  
pp. 154-170
Author(s):  
Janani Balakumar ◽  
S. Vijayarani Mohan

Purpose Owing to the huge volume of documents available on the internet, text classification becomes a necessary task to handle these documents. To achieve optimal text classification results, feature selection, an important stage, is used to curtail the dimensionality of text documents by choosing suitable features. The main purpose of this research work is to classify the personal computer documents based on their content. Design/methodology/approach This paper proposes a new algorithm for feature selection based on artificial bee colony (ABCFS) to enhance the text classification accuracy. The proposed algorithm (ABCFS) is scrutinized with the real and benchmark data sets, which is contrary to the other existing feature selection approaches such as information gain and χ2 statistic. To justify the efficiency of the proposed algorithm, the support vector machine (SVM) and improved SVM classifier are used in this paper. Findings The experiment was conducted on real and benchmark data sets. The real data set was collected in the form of documents that were stored in the personal computer, and the benchmark data set was collected from Reuters and 20 Newsgroups corpus. The results prove the performance of the proposed feature selection algorithm by enhancing the text document classification accuracy. Originality/value This paper proposes a new ABCFS algorithm for feature selection, evaluates the efficiency of the ABCFS algorithm and improves the support vector machine. In this paper, the ABCFS algorithm is used to select the features from text (unstructured) documents. Although, there is no text feature selection algorithm in the existing work, the ABCFS algorithm is used to select the data (structured) features. The proposed algorithm will classify the documents automatically based on their content.


2008 ◽  
Vol 08 (04) ◽  
pp. 495-512 ◽  
Author(s):  
PIETRO COLI ◽  
GIAN LUCA MARCIALIS ◽  
FABIO ROLI

The automatic vitality detection of a fingerprint has become an important issue in personal verification systems based on this biometric. It has been shown that fake fingerprints made using materials like gelatine or silicon can deceive commonly used sensors. Recently, the extraction of vitality features from fingerprint images has been proposed to address this problem. Among others, static and dynamic features have been separately studied so far, thus their respective merits are not yet clear; especially because reported results were often obtained with different sensors and using small data sets which could have obscured relative merits, due to the potential small sample-size issues. In this paper, we compare some static and dynamic features by experiments on a larger data set and using the same optical sensor for the extraction of both feature sets. We dealt with fingerprint stamps made using liquid silicon rubber. Reported results show the relative merits of static and dynamic features and the performance improvement achievable by using such features together.


Feature selection can be used to improve the performance of classification algorithms. This study aims to use algorithms for feature selection in classification problems. The method in feature selection use to the Artificial Bee Colony (ABC) algorithm and Particle Swarm Optimization (PSO) based on Support Vector Machine (SVM). The ABC-SVM algorithm functions as a method of feature selection to choose the optimal subset according to the objectives set to provide the results of the classification. Then, the PSO-SVM as a comparison method in other feature selection. The results of the classification conducted by PSO-SVM with the vowel dataset is good classification (AUC 0.873), when compared with the ABC-SVM with the classification result is superior (AUC 0.996). The results of the Precision Recall and F-Measure calculations on the PSO-VSM algorithm have good classification results for sonar and wavefrom data sets. Meanwhile, the results of tests conducted by ABC-SVM get superior value from the classifier quality efficiency in the vowel data set


2019 ◽  
Vol 21 (9) ◽  
pp. 631-645 ◽  
Author(s):  
Saeed Ahmed ◽  
Muhammad Kabir ◽  
Zakir Ali ◽  
Muhammad Arif ◽  
Farman Ali ◽  
...  

Aim and Objective: Cancer is a dangerous disease worldwide, caused by somatic mutations in the genome. Diagnosis of this deadly disease at an early stage is exceptionally new clinical application of microarray data. In DNA microarray technology, gene expression data have a high dimension with small sample size. Therefore, the development of efficient and robust feature selection methods is indispensable that identify a small set of genes to achieve better classification performance. Materials and Methods: In this study, we developed a hybrid feature selection method that integrates correlation-based feature selection (CFS) and Multi-Objective Evolutionary Algorithm (MOEA) approaches which select the highly informative genes. The hybrid model with Redial base function neural network (RBFNN) classifier has been evaluated on 11 benchmark gene expression datasets by employing a 10-fold cross-validation test. Results: The experimental results are compared with seven conventional-based feature selection and other methods in the literature, which shows that our approach owned the obvious merits in the aspect of classification accuracy ratio and some genes selected by extensive comparing with other methods. Conclusion: Our proposed CFS-MOEA algorithm attained up to 100% classification accuracy for six out of eleven datasets with a minimal sized predictive gene subset.


2020 ◽  
Vol 21 (S18) ◽  
Author(s):  
Sudipta Acharya ◽  
Laizhong Cui ◽  
Yi Pan

Abstract Background In recent years, to investigate challenging bioinformatics problems, the utilization of multiple genomic and proteomic sources has become immensely popular among researchers. One such issue is feature or gene selection and identifying relevant and non-redundant marker genes from high dimensional gene expression data sets. In that context, designing an efficient feature selection algorithm exploiting knowledge from multiple potential biological resources may be an effective way to understand the spectrum of cancer or other diseases with applications in specific epidemiology for a particular population. Results In the current article, we design the feature selection and marker gene detection as a multi-view multi-objective clustering problem. Regarding that, we propose an Unsupervised Multi-View Multi-Objective clustering-based gene selection approach called UMVMO-select. Three important resources of biological data (gene ontology, protein interaction data, protein sequence) along with gene expression values are collectively utilized to design two different views. UMVMO-select aims to reduce gene space without/minimally compromising the sample classification efficiency and determines relevant and non-redundant gene markers from three cancer gene expression benchmark data sets. Conclusion A thorough comparative analysis has been performed with five clustering and nine existing feature selection methods with respect to several internal and external validity metrics. Obtained results reveal the supremacy of the proposed method. Reported results are also validated through a proper biological significance test and heatmap plotting.


Author(s):  
Danlei Xu ◽  
Lan Du ◽  
Hongwei Liu ◽  
Penghui Wang

A Bayesian classifier for sparsity-promoting feature selection is developed in this paper, where a set of nonlinear mappings for the original data is performed as a pre-processing step. The linear classification model with such mappings from the original input space to a nonlinear transformation space can not only construct the nonlinear classification boundary, but also realize the feature selection for the original data. A zero-mean Gaussian prior with Gamma precision and a finite approximation of Beta process prior are used to promote sparsity in the utilization of features and nonlinear mappings in our model, respectively. We derive the Variational Bayesian (VB) inference algorithm for the proposed linear classifier. Experimental results based on the synthetic data set, measured radar data set, high-dimensional gene expression data set, and several benchmark data sets demonstrate the aggressive and robust feature selection capability and comparable classification accuracy of our method comparing with some other existing classifiers.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255307
Author(s):  
Fujun Wang ◽  
Xing Wang

Feature selection is an important task in big data analysis and information retrieval processing. It reduces the number of features by removing noise, extraneous data. In this paper, one feature subset selection algorithm based on damping oscillation theory and support vector machine classifier is proposed. This algorithm is called the Maximum Kendall coefficient Maximum Euclidean Distance Improved Gray Wolf Optimization algorithm (MKMDIGWO). In MKMDIGWO, first, a filter model based on Kendall coefficient and Euclidean distance is proposed, which is used to measure the correlation and redundancy of the candidate feature subset. Second, the wrapper model is an improved grey wolf optimization algorithm, in which its position update formula has been improved in order to achieve optimal results. Third, the filter model and the wrapper model are dynamically adjusted by the damping oscillation theory to achieve the effect of finding an optimal feature subset. Therefore, MKMDIGWO achieves both the efficiency of the filter model and the high precision of the wrapper model. Experimental results on five UCI public data sets and two microarray data sets have demonstrated the higher classification accuracy of the MKMDIGWO algorithm than that of other four state-of-the-art algorithms. The maximum ACC value of the MKMDIGWO algorithm is at least 0.5% higher than other algorithms on 10 data sets.


Sign in / Sign up

Export Citation Format

Share Document