scholarly journals From static to temporal network theory: Applications to functional brain connectivity

2017 ◽  
Vol 1 (2) ◽  
pp. 69-99 ◽  
Author(s):  
William Hedley Thompson ◽  
Per Brantefors ◽  
Peter Fransson

Network neuroscience has become an established paradigm to tackle questions related to the functional and structural connectome of the brain. Recently, interest has been growing in examining the temporal dynamics of the brain’s network activity. Although different approaches to capturing fluctuations in brain connectivity have been proposed, there have been few attempts to quantify these fluctuations using temporal network theory. This theory is an extension of network theory that has been successfully applied to the modeling of dynamic processes in economics, social sciences, and engineering article but it has not been adopted to a great extent within network neuroscience. The objective of this article is twofold: (i) to present a detailed description of the central tenets of temporal network theory and describe its measures, and; (ii) to apply these measures to a resting-state fMRI dataset to illustrate their utility. Furthermore, we discuss the interpretation of temporal network theory in the context of the dynamic functional brain connectome. All the temporal network measures and plotting functions described in this article are freely available as the Python package Teneto.

2016 ◽  
Author(s):  
William Hedley Thompson ◽  
Per Brantefors ◽  
Peter Fransson

AbstractNetwork neuroscience has become an established paradigm to tackle questions related to the functional and structural connectome of the brain. Recently, there has been a growing interest to examine the temporal dynamics of the brain's network activity. While different approaches to capture fluctuations in brain connectivity have been proposed, there have been few attempts to quantify these fluctuations using temporal network theory. Temporal network theory is an extension of network theory that has been successfully applied to the modeling of dynamic processes in economics, social sciences and engineering. The objective of this paper is twofold: (i) to present a detailed description of the central tenets and outline measures from temporal network theory; (ii) apply these measures to a resting-state fMRI dataset to illustrate their utility. Further, we discuss the interpretation of temporal network theory in the context of the dynamic functional brain connectome. All the temporal network measures and plotting functions described in this paper are freely available as a python package Teneto.


2021 ◽  
Author(s):  
Sebastian Markett ◽  
David Nothdurfter ◽  
Antonia Focsa ◽  
Martin Reuter ◽  
Philippe Jawinski

Attention network theory states that attention is not a unified construct but consists of three independent systems that are supported by separable distributed networks: an alerting network to deploy attentional resources in anticipation of upcoming events, an orienting network to direct attention to a cued location, and a control network to select relevant information at the expense of concurrently available information. Ample behavioral and neuroimaging evidence supports the dissociation of the three attention domains. The strong assumption that each attentional system is realized through a separable network, however, raises the question how these networks relate to the intrinsic network structure of the brain. Our understanding of brain networks has advanced majorly in the past years due to the increasing focus on brain connectivity. It is well established that the brain is intrinsically organized into several large-scale networks whose modular structure persists across task states. Existing proposals on how the presumed attention networks relate to intrinsic networks rely mostly on anecdotal and partly contradictory arguments. We addressed this issue by mapping different attention networks with highest spatial precision at the level of cifti-grayordinates. Resulting group maps were compared to the group-level topology of 23 intrinsic networks which we reconstructed from the same participants' resting state fMRI data. We found that all attention domains recruited multiple and partly overlapping intrinsic networks and converged in the dorsal fronto-parietal and midcingulo-insular network. While we observed a preference of each attentional domain for its own set of intrinsic networks, implicated networks did not match well to those proposed in the literature. Our results indicate a necessary refinement of the attention network theory.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Camille Fauchon ◽  
David Meunier ◽  
Isabelle Faillenot ◽  
Florence B Pomares ◽  
Hélène Bastuji ◽  
...  

Abstract Intracranial EEG (iEEG) studies have suggested that the conscious perception of pain builds up from successive contributions of brain networks in less than 1 s. However, the functional organization of cortico-subcortical connections at the multisecond time scale, and its accordance with iEEG models, remains unknown. Here, we used graph theory with modular analysis of fMRI data from 60 healthy participants experiencing noxious heat stimuli, of whom 36 also received audio stimulation. Brain connectivity during pain was organized in four modules matching those identified through iEEG, namely: 1) sensorimotor (SM), 2) medial fronto-cingulo-parietal (default mode-like), 3) posterior parietal-latero-frontal (central executive-like), and 4) amygdalo-hippocampal (limbic). Intrinsic overlaps existed between the pain and audio conditions in high-order areas, but also pain-specific higher small-worldness and connectivity within the sensorimotor module. Neocortical modules were interrelated via “connector hubs” in dorsolateral frontal, posterior parietal, and anterior insular cortices, the antero-insular connector being most predominant during pain. These findings provide a mechanistic picture of the brain networks architecture and support fractal-like similarities between the micro-and macrotemporal dynamics associated with pain. The anterior insula appears to play an essential role in information integration, possibly by determining priorities for the processing of information and subsequent entrance into other points of the brain connectome.


2015 ◽  
Vol 370 (1668) ◽  
pp. 20140170 ◽  
Author(s):  
Riitta Hari ◽  
Lauri Parkkonen

We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.


2021 ◽  
Author(s):  
Takashi Nakano ◽  
Masahiro Takamura ◽  
Haruki Nishimura ◽  
Maro Machizawa ◽  
Naho Ichikawa ◽  
...  

AbstractNeurofeedback (NF) aptitude, which refers to an individual’s ability to change its brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical NF applications. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude independent of NF-targeting brain regions. We combined the data in fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect the resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Next we validated the prediction model using independent test data from another site. The result showed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting NF aptitude may be involved in the attentional mode-orientation modulation system’s characteristics in task-free resting-state brain activity.


2016 ◽  
Vol 11 ◽  
pp. 302-315 ◽  
Author(s):  
Tingting Xu ◽  
Kathryn R. Cullen ◽  
Bryon Mueller ◽  
Mindy W. Schreiner ◽  
Kelvin O. Lim ◽  
...  

2018 ◽  
Vol 1 ◽  
Author(s):  
Sebastian Markett ◽  
Christian Montag ◽  
Martin Reuter

AbstractPersonality and individual differences originate from the brain. Despite major advances in the affective and cognitive neurosciences, however, it is still not well understood how personality and single personality traits are represented within the brain. Most research on brain-personality correlates has focused either on morphological aspects of the brain such as increases or decreases in local gray matter volume, or has investigated how personality traits can account for individual differences in activation differences in various tasks. Here, we propose that personality neuroscience can be advanced by adding a network perspective on brain structure and function, an endeavor that we label personality network neuroscience.With the rise of resting-state functional magnetic resonance imaging (MRI), the establishment of connectomics as a theoretical framework for structural and functional connectivity modeling, and recent advancements in the application of mathematical graph theory to brain connectivity data, several new tools and techniques are readily available to be applied in personality neuroscience. The present contribution introduces these concepts, reviews recent progress in their application to the study of individual differences, and explores their potential to advance our understanding of the neural implementation of personality.Trait theorists have long argued that personality traits are biophysical entities that are not mere abstractions of and metaphors for human behavior. Traits are thought to actually exist in the brain, presumably in the form of conceptual nervous systems. A conceptual nervous system refers to the attempt to describe parts of the central nervous system in functional terms with relevance to psychology and behavior. We contend that personality network neuroscience can characterize these conceptual nervous systems on a functional and anatomical level and has the potential do link dispositional neural correlates to actual behavior.


Neuroscience ◽  
2018 ◽  
Vol 382 ◽  
pp. 80-92 ◽  
Author(s):  
Arkan Al-Zubaidi ◽  
Marcus Heldmann ◽  
Alfred Mertins ◽  
Kamila Jauch-Chara ◽  
Thomas F. Münte

2018 ◽  
Vol 293 ◽  
pp. 299-309 ◽  
Author(s):  
Zikuan Chen ◽  
Arvind Caprihan ◽  
Eswar Damaraju ◽  
Srinivas Rachakonda ◽  
Vince Calhoun

PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e28196 ◽  
Author(s):  
Cheng Luo ◽  
Chuan Qiu ◽  
Zhiwei Guo ◽  
Jiajia Fang ◽  
Qifu Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document