scholarly journals Cerebral White Matter Mediation of Age-Related Differences in Picture Naming Across Adulthood

2022 ◽  
pp. 1-34
Author(s):  
Sara B. W. Troutman ◽  
David J. Madden ◽  
Michele T. Diaz

Abstract As people age, one of the most common complaints is difficulty with word retrieval. A wealth of behavioral research confirms such age-related language production deficits, yet the structural neural differences that relate to age-related language production deficits remains an open area of exploration. Therefore, the present study used a large sample of healthy adults across adulthood to investigate how age-related white matter differences in three key left-hemisphere language tracts may contribute to age-related differences in language ability. Specifically, we used diffusion tensor imaging (DTI) to measure fractional anisotropy (FA) and radial diffusivity (RD) which are indicators of white matter structure. We then used a series of path models to test whether white matter from the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the frontal aslant tract (FAT) mediated age-related differences in one form of language production, picture naming. We found that FA, as well as RD from the SLF and FAT mediated the relation between age and picture naming performance, whereas a control tract (corticospinal; CST) was not a mediator. Moreover, differences between mediation of picture naming and a control naming condition suggest that left SLF has a greater role in higher-order aspects of naming, such as semantic and lexical selection whereas left FAT is more sensitive to sensorimotor aspects of fluency or speech motor planning. These results suggest that dorsal white matter contributes to age-related differences in generating speech and may be particularly important in supporting word retrieval across adulthood.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Kye Hoon Park ◽  
Won-Ho Chung ◽  
Hunki Kwon ◽  
Jong-Min Lee

This study compared white matter development in prelingually deaf and normal-hearing children using a tract-based spatial statistics (TBSS) method. Diffusion tensor imaging (DTI) was performed in 21 prelingually deaf (DEAF group) and 20 normal-hearing (HEAR group) subjects aged from 1.7 to 7.7 years. Using TBSS, we evaluated the regions of significant difference in fractional anisotropy (FA) between the groups. Correlations between FA values and age in each group were also analyzed using voxel-wise correlation analyses on the TBSS skeleton. Lower FA values of the white matter tract of Heschl’s gyrus, the inferior frontooccipital fasciculus, the uncinate fasciculus, the superior longitudinal fasciculus, and the forceps major were evident in the DEAF group compared with those in the HEAR group below 4 years of age, while the difference was not significant in older subjects. We also found that age-related development of the white matter tracts may continue until 8 years of age in deaf children. These results imply that development of the cerebral white matter tracts is delayed in prelingually deaf children.


2021 ◽  
Author(s):  
Shannon Kelley ◽  
John Plass ◽  
Andrew R Bender ◽  
Thad A Polk

Abstract Aging is associated with widespread alterations in cerebral white matter (WM). Most prior studies of age differences in WM have used diffusion tensor imaging (DTI), but typical DTI metrics (e.g., fractional anisotropy; FA) can reflect multiple neurobiological features, making interpretation challenging. Here, we used fixel-based analysis (FBA) to investigate age-related WM differences observed using DTI in a sample of 45 older and 25 younger healthy adults. Age-related FA differences were widespread but were strongly associated with differences in multi-fiber complexity (CX), suggesting that they reflected differences in crossing fibers in addition to structural differences in individual fiber segments. FBA also revealed a frontolimbic locus of age-related effects and provided insights into distinct microstructural changes underlying them. Specifically, age differences in fiber density were prominent in fornix, bilateral anterior internal capsule, forceps minor, body of the corpus callosum, and corticospinal tract, while age differences in fiber cross section were largest in cingulum bundle and forceps minor. These results provide novel insights into specific structural differences underlying major WM differences associated with aging.


2018 ◽  
Vol 15 (14) ◽  
pp. 1354-1360 ◽  
Author(s):  
Ping-Song Chou ◽  
Yi-Hui Kao ◽  
Meng-Ni Wu ◽  
Mei-Chuan Chou ◽  
Chun-Hung Chen ◽  
...  

Background: Cerebrovascular pathologies and hypertension could play a vital role in Alzheimer disease (AD) progression. However, whether cerebrovascular pathologies and hypertension accelerate the AD progression through an independent or interaction effect is unknown. Objective: To investigate the effect of the interactions of cerebrovascular pathologies and hypertension on AD progression. Method: A retrospective longitudinal study was conducted to compare AD courses in patients with different severities of cerebral White Matter Changes (WMCs) in relation to hypertension. Annual comprehensive psychometrics were performed. WMCs were rated using a rating scale for Age-related WMCs (ARWMC). Results: In total, 278 patients with sporadic AD were enrolled in this study. The mean age of the patients was 76.6 ± 7.4 years, and 166 patients had hypertension. Among AD patients with hypertension, those with deterioration in clinical dementia rating-sum of box (CDR-SB) and CDR had significantly severe baseline ARWMC scales in total (CDR-SB: 5.8 vs. 3.6, adjusted P = 0.04; CDR: 6.4 vs. 4.4, adjusted P = 0.04) and frontal area (CDR-SB: 2.4 vs. 1.2, adjusted P = 0.01; CDR: 2.4 vs. 1.7, adjusted P < 0.01) compared with those with no deterioration in psychometrics after adjustment for confounders. By contrast, among AD patients without hypertension, no significant differences in ARWMC scales were observed between patients with and without deterioration. Conclusion: The effect of cerebrovascular pathologies on AD progression between those with and without hypertension might differ. An interaction but not independent effect of hypertension and WMCs on the progression of AD is possible.


NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S128
Author(s):  
H Lemaitre ◽  
S Marenco ◽  
M Emery ◽  
T Alam ◽  
M Geramita ◽  
...  

Author(s):  
Marissa A. Gogniat ◽  
Catherine M. Mewborn ◽  
Talia L. Robinson ◽  
Kharine R. Jean ◽  
L. Stephen Miller

The population of older adults is increasing, indicating a need to examine factors that may prevent or mitigate age-related cognitive decline. The current study examined whether microstructural white matter characteristics mediated the relation between physical activity and executive function in older adults without any self-reported psychiatric and neurological disorders or cognitive impairment (N = 43, mean age = 73 y). Physical activity was measured by average intensity and number of steps via accelerometry. Diffusion tensor imaging was used to examine microstructural white matter characteristics, and neuropsychological testing was used to examine executive functioning. Parallel mediation models were analyzed using microstructural white matter regions of interest as mediators of the association between physical activity and executive function. Results indicated that average steps was significantly related to executive function (β = 0.0003, t = 2.829, P = .007), while moderate to vigorous physical activity was not (β = 0.0007, t = 1.772, P = .08). White matter metrics did not mediate any associations. This suggests that microstructural white matter characteristics alone may not be the mechanism by which physical activity impacts executive function in aging.


NeuroImage ◽  
2009 ◽  
Vol 47 (1) ◽  
pp. 199-203 ◽  
Author(s):  
Richard Beare ◽  
Velandai Srikanth ◽  
Jian Chen ◽  
Thanh G. Phan ◽  
Jennifer Stapleton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document