Climate Change by Global Warming and Its Effects on Production Efficiency of Lactating Dairy Cows in Korea : a Simulation Modeling Approach

2013 ◽  
Vol 21 (4) ◽  
pp. 711-723
Author(s):  
Jung-Jin Lee ◽  
Jun-Sung Lee ◽  
Jong-Nam Kim ◽  
Ja-Keum Seo ◽  
Nam-Chul Jo ◽  
...  
2014 ◽  
Vol 124 (1-2) ◽  
pp. 191-206 ◽  
Author(s):  
Lisa Holsinger ◽  
Robert E. Keane ◽  
Daniel J. Isaak ◽  
Lisa Eby ◽  
Michael K. Young

Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 114
Author(s):  
Gamonmas Dagaew ◽  
Anusorn Cherdthong ◽  
Metha Wanapat ◽  
Sarong So ◽  
Sineenart Polyorach

This study evaluates the effects of fresh cassava root (CR) and a solid feed-block containing sulfur (S-FB) on fermentation in the rumen, feed utilization, milk yield, and milk composition in lactating dairy cows. Four Holstein-Friesian cows with 470 ± 50.0 kg body weight (BW), 10 ± 2 kg day−1 average milk yield, and 112 ± 15 days-in-milk were studied. A 2 × 2 factorial combination was arranged in a 4 × 4 Latin square design to evaluate the treatment-related effects. The treatments were obtained from a combination of two factors: (1) levels of CR at 10 g kg−1 BW (CR-1) and 15 g kg−1 (CR-1.5) and (2) levels of sulfur supplementation in solid feed-block at 20 g kg−1 (S-FB-2) and 40 g kg−1 (S-FB-4). The results showed that CR and S-FB had no interaction effect on feed intake, digestibility, fermentation, blood metabolites, milk yield, or its composition. Feeding CR up to 15 g kg−1 of the BW significantly increased (p < 0.05) the milk fat concentration while it decreased (p < 0.05) the somatic cell count. The S-FB-4 of the sulfur significantly (p < 0.05) increased the acid detergent fiber when compared with the S-FB-2 of the sulfur. CR could be fed up to 15 g kg−1 of BW with S-FB containing high sulfur (40 g kg−1) in dairy cows without a negative impact.


2014 ◽  
Vol 97 (7) ◽  
pp. 4340-4353 ◽  
Author(s):  
A. Asher ◽  
A. Shabtay ◽  
A. Haim ◽  
Y. Aharoni ◽  
J. Miron ◽  
...  

2015 ◽  
Vol 44 (5) ◽  
pp. 1-7
Author(s):  
MM Scholtz ◽  
HC Schönfeldt ◽  
FWC Neser ◽  
GM Schutte

Climate change represents a feedback-loop in which livestock production both contributes to the problem and suffers from the consequences. The impact of global warming and continued, uncontrolled release of greenhouse gasses (GHG) has twofold implications for the livestock industry, and consequently food security. Firstly, the continuous increase in ambient temperature is predicted to have a direct effect on the animal, as well as on food and nutrition security, due to changes associated with temperature itself, relative humidity, rainfall distribution in time and space, altered disease distribution, changes in the ecosystem and biome composition. Secondly, the responsibility of livestock production is to limit the release of greenhouse gases (GHG) or the carbon footprint, in order to ensure future sustainability. This can be done by implementing new or adapted climate-smart production systems, the use of known and new technologies to turn waste into assets, and by promoting sustainable human diets with low environmental impacts. The following elements, which are related to livestock production and climate change, are discussed in this paper: (1) restoring the value of grasslands/rangelands, (2) pastoral risk management and decision support systems, (3) improved production efficiency, (4) global warming and sustainable livestock production, (5) the disentanglement between food and nutritional needs, focusing on nutrient rich core foods, (6) GHG from livestock and carbon sequestration, and (7) water and waste management. No single organization (or industry) within South Africa can perform this research and the implementation thereof on its own. The establishment of a (virtual) centre of excellence in climate-smart livestock production and the environment for the livestock industries, with the objective to share research expertise and information, build capacity and conduct research and development studies, should be a priority.Keywords: Food and nutrition, global warming, production efficiency, rangeland, water, waste


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 172
Author(s):  
José Danrley Cavalcante dos Santos ◽  
Edilson Paes Saraiva ◽  
Severino Gonzaga Neto ◽  
Carla Aparecida Soares Saraiva ◽  
Antônio da Costa Pinheiro ◽  
...  

Tannins have been used to trigger positive effects on ruminal metabolism and increase ruminant production efficiency, since they increase the supply of dietary protein in the small intestine. Increasing levels of tannic acid in a sorghum-based diet on the feeding behavior of five Holstein/Zebu crossbred lactating dairy cows was evaluated. They were subjected to a 5 × 5 Latin square experimental design, with fivelevels of tannin as dry matter (DM) in the diet (0.46, 1.30, 2.60, 3.90, and 5.20%). The levels of the tannic acid added were established based on the quantity of condensed tannin in high-tannin sorghum. Thus, diets 2, 3, 4 and 5 were supplemented with 1.5 g (13% DM), 79.5 g (2.6% DM), 157.5 g (3.9% DM), and 235.5 g (5.2% DM) of tannic acid, totaling 0.078, 0.156, 0.234, and 0.321 kg of tannin/day, respectively. Feeding behavior variables included the following states and events: feeding, drinking, rumination, and inactivity; the frequency of visiting the feed and water troughs; and the occurrence of urination and defecation. Water was provided ad libitum, and its intake was measured during periods of behavioral data collection. The use of two tannin sources (hydrolysable and condensed) corresponding to the total level of 5.20% (on a DM basis) in the diet of lactating dairy cattle does not affect the animals’ health. Tannic acid can be included in the diet of lactating dairy cattle at a level of 3.93% (on a DM basis) without inducing variation in the total time spent daily on feed intake. Dairy cows dilute the effects of dietary tannin (5.20%) through greater fragmentation of food consumption in the hours following its supply (180 min). The astringent effects caused by tannin intake in lactating dairy cows are mitigated by increasing the daily water intake as the amount of tannin in the diet increases, starting at a level of 3.90% tannin (on a DM basis).


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 294-295
Author(s):  
K. A. Juntwait ◽  
A. F. Brito ◽  
K. S. O'Connor ◽  
R. G. Smith ◽  
K. M. Aragona ◽  
...  

1954 ◽  
Vol 13 (1) ◽  
pp. 44-48
Author(s):  
R. K. Waugh ◽  
J. L. Moore ◽  
H. L. Lucas ◽  
E. W. Faires

Sign in / Sign up

Export Citation Format

Share Document