Becoming One Self: A Critical Retrieval of 'Choice Biography'

2007 ◽  
Vol 1 (3) ◽  
pp. 272-293 ◽  
Author(s):  
Frits de Lange

AbstractThe modern life course is described as a 'choice biography.' Rationality and control, and life planning and self-management are central notions. Instead of rejecting the notion categorically, this article opts for a more balanced approach. The Protestant tradition shares central characteristics with choice biography, as Calvin, Edwards, and Bunyan show. However, there are dissimilarities as well. Fundamental in 'choice biography' is its lack of transcendence. Modern individualism threatens to collapse into one-dimensional secularism and egoism. In retrieving Kierkegaard's legacy, the notion 'choice biography' might undergo a critical re-appraisal. In his philosophy, we find both the absolute value of the individual's choices, and a plea for transcendence.

2011 ◽  
Vol 3 (2) ◽  
pp. 56-63
Author(s):  
Rimantas Belevičius ◽  
Darius Mačiūnas ◽  
Dmitrij Šešok

The aim of the article is to report a technology for the optimization of grillage-type foundations seeking for the least possible reactive forces in the piles for a given number of piles and in the absolute value of the bending moments when connecting beams of the grillage. Mathematically, this seems to be the global optimization problem possessing a large number of local minima points. Both goals can be achieved choosing appropriate pile positions under connecting beams; however, these two problems contradict to each other and lead to diff erent schemes for pile placement. Therefore, we suggest using a compromise objective function (to be minimized) that consists of the largest reactive force arising in all piles and that occurring in the absolute value of the bending moment when connecting beams, both with the given weights. Bending moments are calculated at three points of each beam. The design parameters of the problem are positions of the piles. The feasible space of design parameters is determined by two constraints. First, during the optimization process, piles can move only along connecting beams. Therefore, the two-dimensional grillage is “unfolded” to the one-dimensional construct, and supports are allowed to range through this space freely. Second, the minimum allowable distance between two adjacent piles is introduced due to the specific capacities of a pile driver. Also, due to some considerations into the scheme of pile placement, the designer sometimes may introduce immovable supports (usually at the corners of the grillage) that do not participate in the optimization process and always retain their positions. However, such supports hinder to achieve a global solution to a problem and are not treated in this paper. The initial data for the problem are as follows: a geometrical scheme of the grillage, the given number of piles, a cross-section and material data on connecting beams, the minimum possible distance between adjacent supports and loading data given in the form of concentrated loads or trapezoidal distributed loadings. The results of the solution are the required positions of piles. This solution can serve as a pilot project for more detailed design. The entire optimization problem is solved in two steps. First, the grillage is transformed into the one-dimensional construct and the optimizer decides about a routine solution (i.e. the positions of piles in this construct). Second, backward transformation returns pile positions into the two-dimensional grillage and the “black-box” finite element program returns the corresponding objective function value. On the basis of this value, the optimizer predicts new positions of piles etc. The finite element program idealizes connecting beams as beam elements and piles – as mesh nodes of the finite element with a given boundary conditions in the form of vertical and rotational stiff ness. Since the problem may have several tens of design parameters, the only choice for optimization algorithms is using stochastic optimization algorithms. In our case, we use the original elitist real-number genetic algorithm and launch the program sufficient number of times in order to exclude large scattering of results. Three numerical examples are presented for the optimization of 10-pile grillage: when optimizing purely the largest reactive force, purely the largest in the absolute value of the bending moment and both parameters with equal weights.


1993 ◽  
Vol 86 (4) ◽  
pp. 282-287
Author(s):  
Victoria A. Borlaug

This classroom presentation is designed to introduce and interpret the graphical representation of a Tonka® toy truck's forward and backward motion. It can be used to illustrate an application of slope in an algebra class or to introduce the derivative in a calculus class. In the presentation, the teacher moves the Tonka® truck up and down on the chalkboard using chalk to record the motion, asks students questions about the motion, and encourages discussion. The class is asked to pretend that the toy truck has a speedometer. Unlike speedometers in real trucks, this toy speedometer has negative values to represent backward motion, in addmon to its usual positive and zero values. (Speed is the absolute value of velocity. In this situation, the speedometer might better be renamed “velocity-ometer,” but that term would introduce vocabulary unfamiliar to the student.) The presentation leads students to develop a graphical representation of the truck's one-dimensional motion, creates graphs representing constant velocity, leads students to a definition of average velocity, and introduces the concept of instantaneous velocity.


Author(s):  
Ning Ji ◽  
Tao Shui ◽  
Yilou Liu ◽  
Wangrui Zhang ◽  
Xiumei Chen ◽  
...  

Abstract During the production process an error was introduced into equation (14). The absolute value symbol was moved to the wrong place. Here, we give the correct version of equation (14) :


2020 ◽  
Vol 11 (1) ◽  
pp. 20
Author(s):  
Muhammad Ikbal Abdullah ◽  
Andi Chairil Furqan ◽  
Nina Yusnita Yamin ◽  
Fahri Eka Oktora

This study aims to analyze the sensitivity testing using measurements of realization of regional own-source revenues and operating expenditure and to analyze the extent of the effect of sample differences between Java and non-Java provinces by using samples outside of Java. By using sensitivity analysis, the results found the influence of audit opinion on the performance of the provincial government mediated by the realization of regional operating expenditure. More specifically, when using the measurement of the absolute value of the realization of regional operating expenditure it was found that there was a direct positive and significant influence of audit opinion on the performance of the Provincial Government. However, no significant effect of audit opinion was found on the realization value of regional operating expenditure and the effect of the realization value of regional operating expenditure on the performance of the Provincial Government. This result implies that an increase in audit opinion will be more likely to be used as an incentive for the Provincial Government to increase the realization of regional operating expenditure.


1977 ◽  
Vol 32 (11-12) ◽  
pp. 908-912 ◽  
Author(s):  
H. J. Schmidt ◽  
U. Schaum ◽  
J. P. Pichotka

Abstract The influence of five different methods of homogenisation (1. The method according to Potter and Elvehjem, 2. A modification of this method called Potter S, 3. The method of Dounce, 4. Homogenisation by hypersonic waves and 5. Coarce-grained homogenisation with the “Mikro-fleischwolf”) on the absolute value and stability of oxygen uptake of guinea pig liver homogenates has been investigated in simultaneous measurements. All homogenates showed a characteristic fall of oxygen uptake during measuring time (3 hours). The modified method according to Potter and Elvehjem called Potter S showed reproducible results without any influence by homogenisation intensity.


The barometer, here alluded to, may in some measure be consi­dered as two separate and independent barometers, inasmuch as it is formed of two distinct tubes dipping into one and the same cistern of mercury. One of these tubes is made of flint glass, and the other of crown glass, with a view to ascertain whether, at the end of any given period, the one may have had any greater chemical effect on the mercury than the other, and thus affected the results. A brass rod, to which the scale is attached, passes through the framework, between the two tubes, and is thus common to both : one end of which is furnished with a fine agate point, which, by means of a rack and pinion moving the whole rod, may be brought just to touch the surface of the mercury in the cistern, the slightest contact with which is immediately discernible; and the other end of which bears the usual scale of inches, tenths, &c.; and there is a separate vernier for each tube. A small thermometer, the bulb of which dips into the mercury in the cistern, is inserted at the bottom : and an eye­piece is also there fixed, so that the agate point can be viewed with more distinctness and accuracy. The whole instrument is made to turn round in azimuth, in order to verify the perpendicularity of the tubes and the scale. It is evident that there are many advantages attending this mode of construction, which are not to be found in the barometers as usu­ally formed for general use in this country. The absolute heights are more correctly and more satisfactorily determined ; and the per­manency of true action is more effectually noticed and secured. For, every part is under the inspection and control of the observer; and any derangement or imperfection in either of the tubes is imme­diately detected on comparison with the other. And, considering the care that has been taken in filling the tubes, and setting off the scale, it may justly be considered as a standard barometer . The pre­sent volume of the Philosophical Transactions will contain the first register of the observations that have been made with this instru­ment.


2017 ◽  
Vol 24 (14) ◽  
pp. 3206-3218
Author(s):  
Yohei Kushida ◽  
Hiroaki Umehara ◽  
Susumu Hara ◽  
Keisuke Yamada

Momentum exchange impact dampers (MEIDs) were proposed to control the shock responses of mechanical structures. They were applied to reduce floor shock vibrations and control lunar/planetary exploration spacecraft landings. MEIDs are required to control an object’s velocity and displacement, especially for applications involving spacecraft landing. Previous studies verified numerous MEID performances through various types of simulations and experiments. However, previous studies discussing the optimal design methodology for MEIDs are limited. This study explicitly derived the optimal design parameters of MEIDs, which control the controlled object’s displacement and velocity to zero in one-dimensional motion. In addition, the study derived sub-optimal design parameters to control the controlled object’s velocity within a reasonable approximation to derive a practical design methodology for MEIDs. The derived sub-optimal design methodology could also be applied to MEIDs in two-dimensional motion. Furthermore, simulations conducted in the study verified the performances of MEIDs with optimal/sub-optimal design parameters.


Sign in / Sign up

Export Citation Format

Share Document