Nesting biology and life history of the dung beetle Onthophagus lecontei (Coleoptera: Scarabaeinae)

2017 ◽  
Vol 67 (1) ◽  
pp. 41-52 ◽  
Author(s):  
L. Arellano ◽  
C. Castillo-Guevara ◽  
C. Huerta ◽  
A. Germán-García ◽  
C. Lara

Obtaining knowledge about a species’ life history and reproductive behaviour is fundamental for understanding its biology, ecology, and potential role in ecosystem services. Here, we focused on the dung beetle species Onthophagus lecontei. Adults were collected in the field and then confined to terrariums, where they were supplied with semi-fresh domestic goat dung (Capra aegagrus Erxleben, 1777). After being paired (26 pairs), the nesting behavior of beetles was observed under laboratory conditions and the preimaginal development of individuals obtained from mating (from the deposition of the egg until the emergence of the adult) was described. Their nesting behavior was found to be characteristic of what is known as pattern I, which comprises building of brood masses, oviposition of a single egg in each brood mass, development of three larval instars, construction of a pupation chamber, pupal stage and adult emergence. Both sexes were involved in the handling of dung, tunnel construction, and mass nest elaboration. Pairs built from one to seven brood masses. The pre-nesting period (feeding) lasted 16 days; the egg stage two days, the larval period 22 days; the pupal period 11 days and the imagoes four days, after which the adults emerged. Our results are discussed and compared with other species in the genus. However, our knowledge of this dung beetle is still limited, and further studies are required in all areas of its biology.

1987 ◽  
Vol 22 (3) ◽  
pp. 237-244 ◽  
Author(s):  
W. Davis Martin ◽  
G. A. Herzog

The life history of the tobacco flea beetle, Epitrix hirtipennis (Melsheimer) (= Epitrix parvula Fab.) was studied under the controlled conditions of 27 ± 2.8°C, 80 ± 6% and a 14L:10D photophase. Eggs matured in ca. 4 days, the larval stage, including 3 instars, developed in 13 days, prepupal development took 3 days and the pupal stage lasted approximately 5 days. There was a 24 day interval between oviposition and adult emergence. Females laid 3.1 eggs/day with a 13 day period between adult emergence and first oviposition. The mean number of total eggs/female was 138.6 ± 14.7. Female oviposition continued until a few days before death and adult longevity was approximately 70 days. A visual means of distinguishing between male and female beetles was also developed.


1974 ◽  
Vol 106 (8) ◽  
pp. 785-800 ◽  
Author(s):  
G. S. Olton ◽  
E. F. Legner

AbstractThe synonymy, distribution, host range, and life history of the gregarious larval–pupal parasitoid Tachinaephagus zealandicus Ashmead, is discussed. Laboratory studies of its biology were conducted at 25° ± 2 °C using Musca domestica L. as host. Its developmental stages are described. Under laboratory conditions its life cycle lasted 23–27 days. Parasitoid development accelerated with higher average densities per host. Single standardized hosts produced 3–18 adult parasitoids. Mated females provided with hosts lived 50.4–67.2 h. The average length of the reproductive period and number of hosts parasitized were independent of host density; however, the average number of eggs deposited per host increased at lower host densities. Adult emergence displayed circadian rhythmicity independent of photoperiod over 3+ days.


1993 ◽  
Vol 44 (2) ◽  
pp. 363 ◽  
Author(s):  
RM St.Clair

Life history studies were carried out for populations of six species of Leptoceridae. Study sites were a permanent river (Acheron), a temporary river (Lerderderg) and a permanent lake (Monash University). Life histories varied in degree of synchrony of larval development, in length of adult emergence period, and from bi- to semivoltine. Oviposition requirements of adults were found to be the major factor influencing synchrony of the life history of one species. Life history features did not ameliorate the effects of the severe drought of 1982-83, nor did drought result in large changes in life histories.


1987 ◽  
Vol 65 (1) ◽  
pp. 156-163 ◽  
Author(s):  
Olga Kukal ◽  
Peter G. Kevan

The life history of Gynaephora groenlandica was studied in the high arctic at Alexandra Fiord, Ellesmere Island. Life history events (larval development, pupation, adult emergence, mating, oviposition, hatching, and moulting to the second larval instar) occurred only in the 3–4 weeks before mid-July. Larvae fed mainly on Salix arctica. They stopped feeding by the end of June, hid, and spun hibernacula. Nineteen percent of third- and fourth-instar larvae were parasitized by the wasp Hyposoter pectinatus (Ichenumonidae); 52% of fifth- and sixth-instar larvae and pupae were parasitized by the fly Exorista sp. (Tachinidae). We estimated that G. groenlandica has a life cycle lasting 14 years. Parasitism caused 56% of overall mortality, whereas cumulative winter mortality was calculated as 13% of a cohort passing through a 14-year life cycle. Peak of activity of adult parasitoids coincided with inactivity of Gynaephora larvae during July. Selective pressure of parasitism may restrict development of G. groenlandica to a short period before adult parasitoids are most active. The importance of parasitoids in the life history of G. groenlandica suggests that parasitism is as significant as climate in population regulation of insects living in the high arctic.


Parasitology ◽  
1933 ◽  
Vol 25 (3) ◽  
pp. 342-352 ◽  
Author(s):  
Mary E. Fuller

The life history of Onesia accepta Mall. is described. This species is parasitic on the earthworm Microscolex dubius Fletcher. The first and second larval instars are passed under the skin and the third instar in the body cavity of the host. The feeding period of the maggot is approximately 20 days, and the pupal stage about 12 days.The external morphology of the three larval instars and of the puparium is described in detail.


The Condor ◽  
1957 ◽  
Vol 59 (5) ◽  
pp. 274-296 ◽  
Author(s):  
Anders H. Anderson ◽  
Anne Anderson

1996 ◽  
Vol 31 (1) ◽  
pp. 63-71
Author(s):  
J. S. Hunter ◽  
G. T. Fincher ◽  
D. C. Sheppard

Adult Onthophagus depressus Harold constructed brood cells of cattle dung 15 to 30 cm below the soil surface. These brood cells averaged 23.1 mm long and 16.1 mm wide. Adult females deposited a single egg in the egg chamber of each brood cell. Eggs were 2.3 to 2.5 mm long and 1.1 to 1.4 mm wide. Embryonic development required 2.5 to 4.3 d; larval development (three instars) 27 d, and pupal development about 12 d. Development from egg to adult averaged 46.3 d at 25–27°C. Adult beetles were captured in all months except February with peak flight activity between 2000 and 2100 h (EST). Overwintering occurred in the adult and/or pupal stage in southern Georgia.


2016 ◽  
Vol 64 (2) ◽  
pp. 100 ◽  
Author(s):  
Amanda B. Edworthy

Blood-sucking fly larvae are widespread parasites of nestling birds, but in many systems we lack knowledge of their basic biology. This study reports the first observation of an endemic Tasmanian fly species, Passeromyia longicornis (Diptera : Muscidae), parasitising the forty-spotted pardalote (Pardalotus quadragintus), another Tasmanian endemic. Because the forty-spotted pardalote is an endangered and declining songbird, P. longicornis is a species of interest to conservation biologists. Its larval form is an obligate, subcutaneous parasite of nestling birds, but before this study, there were just two published records of the species infesting avian hosts, and little known about its ecology or life cycle. This study documented hosts, prevalence, and larval life history of P. longicornis by locating and monitoring nests and ectoparasites of the forest bird community in south-eastern Tasmania. I also reared P. longicornis larvae in captivity to determine the length of the pupal stage in relationship to ambient temperature. Hosts of P. longicornis included forty-spotted pardalotes (87% prevalence across nests), striated pardalotes (Pardalotus striatus) (88% prevalence), and New Holland honeyeaters (Phylidonyris novaehollandiae) (11% prevalence). Both pardalote species were new host records. P. longicornis larvae burrowed under the skin of nestlings where they developed for 4–7 days, feeding on nestling blood. When fully grown, larvae dropped into the surrounding nest material and formed pupae. Length of the pupal stage was 14–21 days, and declined with increasing ambient temperature. Median parasite abundance was 15 larvae in infested forty-spotted pardalote nests and 11 larvae in infested striated pardalote nests. Nestling mortality was frequently associated with ectoparasite presence. This study provides the first survey of P. longicornis hosts, prevalence and life cycle, and shows that this species is likely a major player in the ecology of pardalotes, and possibly other forest bird species in Tasmania.


1976 ◽  
Vol 108 (11) ◽  
pp. 1235-1241 ◽  
Author(s):  
Stewart B. Peck ◽  
Donald R. Russell

AbstractThe mycetophilid Macrocera nobilis Johnson, previously known only from forests in New Hampshire and Massachusetts, is here reported from caves in Oklahoma, Missouri, Kentucky, Tennessee, and West Virginia. A study of populations in Oklahoma shows that the short-lived adults mate in cave entrances, but that oviposition, larval development, and pupation occur only in the dark zone of caves. The larvae build extensive webs upon which they travel and which they use to capture insect prey (mostly other Diptera). Reproduction and life cycle development is not seasonal. The larval stage lasts 9 or 10 months, and the pupal stage about 2 weeks.


2017 ◽  
pp. 159-163
Author(s):  
Silvano Biondi ◽  
Carlo Massarone ◽  
Cosmin-Ovidiu Manci

On the base of data collected during four expeditions in Gabon (West Africa) from 2012 to 2016, the authors provide new information on trophic activity and reproductive behaviour of Paratomapoderus brachypterus (Voss, 1926) (Attelabidae: Apoderinae, Hoplapoderini), with emphasis on leaf-roll realisation; host plant, leaf roll, larva and pupa are illustrated for the first time.


Sign in / Sign up

Export Citation Format

Share Document