The Effect of Fungal Application Rate and Nematode Density On the Effectiveness of Verticillium Chlamydosporium as a Biological Control Agent for Meloidogyne Incognita

Nematologica ◽  
1992 ◽  
Vol 38 (1-4) ◽  
pp. 112-122 ◽  
Author(s):  
F.A.A.M. De Leij ◽  
J.A. Dennehy ◽  
B.R. Kerry
1995 ◽  
Vol 73 (S1) ◽  
pp. 65-70 ◽  
Author(s):  
B. R. Kerry

The nematophagous fungus, Verticillium chlamydosporium, has considerable potential as a biological control agent for root-knot nematodes on a range of crops. The fungus is a general facultative parasite that attacks the eggs of several nematode species. The biology of the fungus is reviewed and the need for a detailed understanding of its ecology for its rational use as a biological control agent is highlighted. Isolates of the fungus must colonize the rhizosphere to be effective control agents. Plants differ in their ability to support the fungus and greatest control is achieved on those cultivars that support abundant growth of the fungus but produce only limited galling in response to nematode attack. On such plants, most eggs produced by nematodes are exposed to parasitism by this nematophagous fungus in the rhizosphere. Key words: biological control, nematophagous fungi, root-knot nematodes, Verticillium chlamydosporium.


2009 ◽  
Vol 49 (4) ◽  
pp. 337-340 ◽  
Author(s):  
Elvira Oclarit ◽  
Christian Cumagun

Evaluation of Efficacy of Paecilomyces Lilacinus as Biological Control Agent of Meloidogyne Incognita Attacking Tomato The efficacy of Paecilomyces lilacinus strain UP1 as biological control agent of Meloidogyne incognita attacking tomato was evaluated under screenhouse condition pot experiments. P. lilacinus was formulated on rice substrate in powder form. Root weight, gall index rating, number of galls, egg masses and nematodes per one gram root sample were determined and per cent reduction in gall number was computed. Root weight and gall index ratings were significantly higher in untreated plants than those with P. lilacinus and with the commercial fungicide Nemacur. Number of galls, nematodes and egg masses per one gram root sample were significantly reduced by the application of P. lilacinus at all levels and this was comparable with Nemacur. However, egg mass count in plants treated with the lowest concentration of the biocontrol agent was not significantly different from the uninoculated control. Per cent reduction in gall number was the highest at treatment with 7.92 × 106 spores per ml of P. lilacinus.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Haiyan Fan ◽  
Meiling Yao ◽  
Haiming Wang ◽  
Di Zhao ◽  
Xiaofeng Zhu ◽  
...  

Abstract Background Root-knot nematode is one of the most significant diseases of vegetable crops in the world. Biological control with microbial antagonists has been emerged as a promising and eco-friendly treatment to control pathogens. The aim of this study was to screen and identify novel biocontrol agents against root-knot nematode, Meloidogyne incognita. Results A total of 890 fungal isolates were obtained from rhizosphere soil of different crops and screened by nematicidal activity assays. Snef1910 strain showed high virulence against second stage juveniles (J2s) of M. incognita and identified as Trichoderma citrinoviride by morphology analysis and biomolecular assay. Furthermore, T. citrinoviride Snef1910 significantly inhibited egg hatching with the hatching inhibition percentages of 90.27, 77.50, and 67.06% at 48, 72, and 96 h after the treatment, respectively. The results of pot experiment showed that the metabolites of T. citrinoviride Snef1910 significantly decreased the number of root galls, J2s, and nematode egg masses and J2s population density in soil and significantly promoted the growth of tomato plants. In the field experiment, the biocontrol application showed that the control efficacy of T. citrinoviride Snef1910 against root-knot nematode was more than 50%. Meanwhile, T. citrinoviride Snef1910 increased the tomato plant biomass. Conclusions T. citrinoviride strain Snef1910 could be used as a potential biological control agent against root-knot nematode, M. incognita.


1992 ◽  
Vol 38 (5) ◽  
pp. 359-364 ◽  
Author(s):  
B. A. Jaffee

We studied the population biology of the nematophagous fungus Hirsutella rhossiliensis to understand its potential as a biological control agent. Because the fungus is an infectious and transmissible parasite, we framed our study within an epidemiological context. Field observations, theory, and experiments demonstrated that (i) parasitism of nematodes by H. rhossiliensis is dependent on nematode density, (ii) local populations of the fungus will go extinct unless supplied with some minimum number of nematodes (the host threshold density), and (iii) natural epidemics of this fungus in populations of nematodes develop slowly and only after long periods of high host density. Additional in-depth research on population biology is needed to explain other biological control systems and to guide future research. The most effective research will combine field observation, theory, and experimentation. Key words: density-dependent parasitism, host-parasite dynamics, modeling, nematophagous fungi.


Sign in / Sign up

Export Citation Format

Share Document