Phylogeny of the semiaquatic bugs (Hemiptera-Heteroptera, Gerromorpha)

2008 ◽  
Vol 39 (4) ◽  
pp. 431-460 ◽  
Author(s):  
Jakob Damgaard

AbstractThe phylogeny of semi-aquatic bugs (Hemiptera-Heteroptera: Gerromorpha) was tested in parsimony analyses of 64 morphological characters and approximately 2.5 kb of DNA sequence data from the mitochondrial genes encoding COI+II and 16SrRNA and the nuclear gene encoding 28SrRNA. The taxon sample included representatives of all families and most subfamilies of Gerromorpha and a selection of outgroup taxa representing the two basal infraorders of Heteroptera, Enicocephalomorpha and Dipsocoromorpha, and two families of Nepomorpha. A simultaneous analysis (SA) of all data, and with gaps scored as fifth state characters, gave a single most parsimonious tree with all families resolved as monophyletic, except the Veliidae, where Microveliinae + Haloveliinae, Veliinae, Rhagoveliinae, Perittopinae, and Ocelloveliinae were resolved as successive sister groups to the Gerridae, thus confirming earlier statements about paraphyly of this family. The Gerridae + Veliidae clade was strongly supported, but otherwise only the Gerridae + Veliidae less Ocelloveliinae and the Gerridae itself had support. These three clades could all be diagnosed on apomorphic morphological characters, although no characters diagnosing the Gerridae were without convergences or present in all included taxa. While the Ocelloveliinae, Veliinae and Haloveliinae could not be diagnosed on convincing apomorphies, the Microveliinae + Haloveliinae, and their sister group relationship with the Gerridae, could be diagnosed on rather strong morphological synapomorphies, suggesting that Gerridae could be expanded to include these two veliid subfamilies, while Ocelloveliinae, and perhaps the remaining veliid subfamilies, could be elevated to new families. In Gerridae, the Ptilomerinae + Halobatinae was sister group to all other subfamilies, while the Rhagadotarsinae + Trepobatinae was sister group to a clade comprising the Gerrinae, Eotrechinae, Cylindrostethinae and Charmatometrinae. Most relationships in this clade were poorly supported and diagnosed, and Cylindrostethinae was surprisingly found to be paraphyletic. The sister group to the Gerridae + Veliidae clade was a strongly supported clade comprising the Paraphrynoveliidae and Macroveliidae, and this, and the lack of convincing synapomorphies for Paraphrynoveliidae, suggest that these two small families could be synonymized. For the basal relationships of Gerromorpha, the Mesoveliidae was strongly supported sister group to all other families, while the Hebridae, Hermatobatidae and Hydrometridae formed a poorly supported and poorly diagnosed sister group to the Gerridae + Veliidae + Paraphrynoveliidae + Macroveliidae clade. The unexpected sister group relationship between Hermatobatidae and Hydrometridae was moderately supported, and could be diagnosed on two synapomorphies, thus giving a new hypothesis about the relationships of these very divergent families. Phylogenetic analyses of individual character partitions gave less resolved and less supported relationships, and the mitochondrial genes COI+II and 16SrRNA contributed negative hidden partitioned Bremer support (HPBS) to the simultaneous analysis tree, probably due to homoplasy caused by saturation effects.

2009 ◽  
Vol 21 (6) ◽  
pp. 565-570 ◽  
Author(s):  
Kristen L. Kuhn ◽  
Thomas J. Near

AbstractThe biota of Antarctica is amazingly rich and highly endemic. The phylogenetics of notothenioid fishes has been extensively investigated through analyses of morphological characters, DNA sequences from mitochondrial genes, and single copy nuclear genes. These phylogenetic analyses have produced reasonably similar phylogenetic trees of notothenioids, however a number of phylogenetic questions remain. The nototheniid clade Trematomus is an example of a group where phylogenetic relationships remain unresolved. In this paper we revisit the phylogenetic relationships of Trematomus using both increased taxon sampling and an expanded dataset which includes DNA sequences from two mitochondrial genes (ND2 and 16S rRNA) and one single-copy nuclear gene (RPS7). The Bayesian phylogeny resulting from the analysis of the combined mitochondrial and nuclear gene datasets was well resolved and contained more interspecific nodes supported with significant Bayesian posteriors than either the mitochondrial or nuclear gene phylogenies alone. This demonstrates that the addition of nuclear gene sequence data to mitochondrial data can enhance phylogenetic resolution and increase node support. Additionally, the results of the combined mitochondrial and nuclear Bayesian analyses provide further support for the inclusion of species previously classified as Pagothenia and Cryothenia in Trematomus.


2020 ◽  
Author(s):  
Jorge Flores ◽  
Alexander C. Bippus ◽  
Alexandru Tomescu ◽  
Neil Bell ◽  
Jaakko Hyvönen

AbstractWhen fossils are sparse and the lineages studied are very divergent morphologically, analyses based exclusively on morphology may lead to conflicting and unexpected hypotheses. Through integration of data from conservative genes/gene regions the terminals including these data can anchor or constrain the search, thereby practically circumscribing the search space of the combined analyses. In this study, we revisit the phylogeny of a highly divergent group of mosses, class Polytrichopsida. We supplemented the morphological matrix by adding sequence data of the nuclear gene 18S, chloroplast genes rbcL and rps4, plus the mitochondrial gene nad5. For the phylogenetic analyses we used parsimony as the optimality criterion. Analyses that included all the terminals resulted in one most parsimonious tree with a clade comprised of Alophosia azorica and the fossil Meantoinea alophosioides representing the basal-most lineage. Analyses with different outgroup sampling produced the same topology for most ingroup relationships. An analysis excluding morphological characters and the four terminals for which only morphological characters were scored (the two fossil and two extant terminals) resulted in one optimal tree with identical topology to the one obtained when including all terminals. These results are largely congruent with those obtained in the recent analyses based exclusively on sequence level data of a larger number of terminals. Our results indicate that large size and complexity of the gametophyte have evolved independently in several lineages. Notably, the nodes of the backbone of the most parsimonious tree have very low support values, thus these inferred relationships could change if new additional information conflicts with the current data. Future studies should be aimed at incorporating all terminals into phylogenetic analyses, which is not an unrealistic goal for a group with less than 200 species. Also, additional fossils, some of which await detailed examination and description, need to be included. Whether these will affect the overall pattern of phylogeny presented here remains to be seen. In a group that is obviously very ancient, we cannot assume, a priori, that currently known fossil taxa, which go back in time less than 140 Ma, represent the oldest lineages of the group.


2010 ◽  
Vol 24 (6) ◽  
pp. 539 ◽  
Author(s):  
Aodhán D. Butler ◽  
Gregory D. Edgecombe ◽  
Alexander D. Ball ◽  
Gonzalo Giribet

Recent phylogenetic analyses of scutigeromorph centipedes omitted New Guinea endemics for lack of modern data, either from morphology or molecular sequences. Among these is the tribe Ballonemini, originally established for Ballonema Verhoeff, 1904, and Parascutigera Verhoeff, 1904, based on similar tergal prominences. Subsequent systematic revision led to their separation into different subfamilies. Combined analyses of morphology and sequence data including Ballonema gracilipes Verhoeff, 1904, resolve Ballonema either in a grade of Scutigerinae or as sister to all other Scutigerinae + Thereuoneminae. Confocal laser scanning microscopy (CLSM) of the types of B. gracilipes demonstrates the utility of this technique for non-destructive imaging of historical museum material at a resolution comparable to scanning electron microscopy. A possible record of Ballonema in the Seychelles is dismissed; a collection from Silhouette samples a member of Thereuoneminae described as Seychellonema gerlachi, gen. nov. sp. nov. Morphological data, analysed with sequence data for other Scutigeromorpha, ally Seychellonema with the Oriental–Australian genus Thereuopoda Verhoeff, 1904, but it displays a novel patterning of its tergal spinula and tarsal papillae. The phylogenetic analyses include sequence data for African Pselliodidae, corroborating a sister group relationship to remaining Scutigeromorpha and generating a more stable result than in earlier analyses using only Neotropical species.


2010 ◽  
Vol 41 (3) ◽  
pp. 295-302 ◽  
Author(s):  
Martin Carr ◽  
Michael Balke ◽  
Marion Kotrba

AbstractThe placement of Diopsina in a monophyletic clade with Diopsis and Eurydiopsis is confirmed and a sister group relationship between Diopsina and Diopsis recovered with moderate support. The clarification of the phylogenetic position of Diopsina nested deeply within Diopsini is of crucial importance for the understanding of the relationships and the evolution of various morphological characters within the family.


2000 ◽  
Vol 78 (11) ◽  
pp. 1873-1884 ◽  
Author(s):  
Damhnait McHugh

Traditionally, the Annelida has been classified as a group comprising the Polychaeta and the Clitellata. Recent phylogenetic analyses have led to profound changes in the view that the Annelida, as traditionally formulated, is a natural, monophyletic group. Both molecular and morphological analyses support placement of the Siboglinidae (formerly the Pogonophora) as a derived group within the Annelida; there is also evidence, based on molecular analysis of the nuclear gene elongation factor-1α, that the unsegmented echiurids are derived annelids. While monophyly of the Clitellata is well-supported by both molecular and morphological analyses, there is no molecular evidence to support monophyly of the polychaete annelids; the Clitellata fall within a paraphyletic polychaete grade. Relationships among groups of polychaete annelids have not yet been resolved by molecular analysis. Within the Clitellata, paraphyly of the Oligochaeta was indicated in a phylogenetic analysis of cytochrome c oxidase I, which supported a sister relationship between the leeches, including an acanthobdellid and a branchiobdellid, and two of the four oligochaetes in the analysis. There is some evidence from analysis of 18S rRNA sequences for a sister-group relationship between the clitellates and the taxon Aeolosoma. There is no agreement regarding the body form of the basal annelid, and while molecular analyses provide strong support for the Eutrochozoa, the identity of sister-group to the Annelida among the Eutrochozoa remains enigmatic. It is recommended that future investigations include additional conserved gene sequences and expanded taxon sampling. It is likely that the most productive approach to resolving annelid phylogeny, and thus increasing our understanding of annelid evolution, will come from combined analyses of several gene sequences.


Author(s):  
Tom A Williams ◽  
Dominik Schrempf ◽  
Gergely J Szöllősi ◽  
Cymon J Cox ◽  
Peter G Foster ◽  
...  

Abstract There is an expectation that analyses of molecular sequences might be able to distinguish between alternative hypotheses for ancient relationships, but the phylogenetic methods used and types of data analyzed are of critical importance in any attempt to recover historical signal. Here we discuss some common issues that can influence the topology of trees obtained when using overly-simple models to analyze molecular data that often display complicated patterns of sequence heterogeneity. To illustrate our discussion, we have used three examples of inferred relationships which have changed radically as models and methods of analysis have improved. In two of these examples, the sister-group relationship between thermophilic Thermus and mesophilic Deinococcus, and the position of long-branch Microsporidia among eukaryotes, we show that recovering what is now generally considered to be the correct tree is critically dependent on the fit between model and data. In the third example, the position of eukaryotes in the tree of life, the hypothesis that is currently supported by the best available methods is fundamentally different from the classical view of relationships between major cellular domains. Since heterogeneity appears to be pervasive and varied among all molecular sequence data, and even the best available models can still struggle to deal with some problems, the issues we discuss are generally relevant to phylogenetic analyses. It remains essential to maintain a critical attitude to all trees as hypotheses of relationship that may change with more data and better methods.


2019 ◽  
Vol 44 (4) ◽  
pp. 930-942
Author(s):  
Geraldine A. Allen ◽  
Luc Brouillet ◽  
John C. Semple ◽  
Heidi J. Guest ◽  
Robert Underhill

Abstract—Doellingeria and Eucephalus form the earliest-diverging clade of the North American Astereae lineage. Phylogenetic analyses of both nuclear and plastid sequence data show that the Doellingeria-Eucephalus clade consists of two main subclades that differ from current circumscriptions of the two genera. Doellingeria is the sister group to E. elegans, and the Doellingeria + E. elegans subclade in turn is sister to the subclade containing all remaining species of Eucephalus. In the plastid phylogeny, the two subclades are deeply divergent, a pattern that is consistent with an ancient hybridization event involving ancestral species of the Doellingeria-Eucephalus clade and an ancestral taxon of a related North American or South American group. Divergence of the two Doellingeria-Eucephalus subclades may have occurred in association with northward migration from South American ancestors. We combine these two genera under the older of the two names, Doellingeria, and propose 12 new combinations (10 species and two varieties) for all species of Eucephalus.


Zootaxa ◽  
2017 ◽  
Vol 4254 (5) ◽  
pp. 537 ◽  
Author(s):  
CHIA-HSUAN WEI ◽  
SHEN-HORN YEN

The Epicopeiidae is a small geometroid family distributed in the East Palaearctic and Oriental regions. It exhibits high morphological diversity in body size and wing shape, while their wing patterns involve in various complex mimicry rings. In the present study, we attempted to describe a new genus, and a new species from Vietnam, with comments on two assumed congeneric novel species from China and India. To address its phylogenetic affinity, we reconstructed the phylogeny of the family by using sequence data of COI, EF-1α, and 28S gene regions obtained from seven genera of Epicopeiidae with Pseudobiston pinratanai as the outgroup. We also compared the morphology of the new taxon to other epicopeiid genera to affirm its taxonomic status. The results suggest that the undescribed taxon deserve a new genus, namely Mimaporia gen. n. The species from Vietnam, Mimaporia hmong sp. n., is described as new to science. Under different tree building strategies, the new genus is the sister group of either Chatamla Moore, 1881 or Parabraxas Leech, 1897. The morphological evidence, which was not included in phylogenetic analyses, however, suggests its potential affinity with Burmeia Minet, 2003. This study also provides the first, although preliminary, molecular phylogeny of the family on which the revised systematics and interpretation of character evolution can be based. 


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7853 ◽  
Author(s):  
Yuchen Yan ◽  
Gengyun Niu ◽  
Yaoyao Zhang ◽  
Qianying Ren ◽  
Shiyu Du ◽  
...  

Labriocimbex sinicus Yan & Wei gen. et sp. nov. of Cimbicidae is described. The new genus is similar to Praia Andre and Trichiosoma Leach. A key to extant Holarctic genera of Cimbicinae is provided. To identify the phylogenetic placement of Cimbicidae, the mitochondrial genome of L. sinicus was annotated and characterized using high-throughput sequencing data. The complete mitochondrial genome of L. sinicus was obtained with a length of 15,405 bp (GenBank: MH136623; SRA: SRR8270383) and a typical set of 37 genes (22 tRNAs, 13 PCGs, and two rRNAs). The results demonstrated that all PCGs were initiated by ATN codon, and ended with TAA or T stop codons. The study reveals that all tRNA genes have a typical clover-leaf secondary structure, except for trnS1. Remarkably, the secondary structures of the rrnS and rrnL of L. sinicus were much different from those of Corynis lateralis. Phylogenetic analyses verified the monophyly and positions of the three Cimbicidae species within the superfamily Tenthredinoidea and demonstrated a relationship as (Tenthredinidae + Cimbicidae) + (Argidae + Pergidae) with strong nodal supports. Furthermore, we found that the generic relationships of Cimbicidae revealed by the phylogenetic analyses based on COI genes agree quite closely with the systematic arrangement of the genera based on the morphological characters. Phylogenetic tree based on two methods shows that L. sinicus is the sister group of Praia with high support values. We suggest that Labriocimbex belongs to the tribe Trichiosomini of Cimbicinae based on adult morphology and molecular data. Besides, we suggest to promote the subgenus Asitrichiosoma to be a valid genus.


Fossil Record ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Gloria Arratia ◽  
Hans-Peter Schultze ◽  
Helmut Tischlinger

Abstract. A complete morphological description, as preservation permits, is provided for a new Late Jurassic fish species (Tharsis elleri) together with a revision and comparison of some morphological features of Tharsis dubius, one of the most common species from the Solnhofen limestone, southern Germany. An emended diagnosis of the genus Tharsis – now including two species – is presented. The new species is characterized by a combination of morphological characters, such as the presence of a complete sclerotic ring formed by two bones placed anterior and posterior to the eye, a moderately short lower jaw with quadrate-mandibular articulation below the anterior half of the orbit, caudal vertebrae with neural and haemal arches fused to their respective vertebral centrum, and parapophyses fused to their respective centrum. A phylogenetic analysis based on 198 characters and 43 taxa is performed. Following the phylogenetic hypothesis, the sister-group relationship Ascalaboidae plus more advanced teleosts stands above the node of Leptolepis coryphaenoides. Both nodes have strong support among teleosts. The results confirm the inclusion of Ascalabos, Ebertichthys and Tharsis as members of this extinct family. Tharsis elleri n. sp. (LSID urn:lsid:zoobank.org:act:6434E6F5-2DDD-48CF-A2B1-827495FE46E6, date: 13 December 2018) is so far restricted to one Upper Jurassic German locality – Wegscheid Quarry near Schernfeld, Eichstätt – whereas Tharsis dubius is known not only from Wegscheid Quarry, but also from different localities in the Upper Jurassic of Bavaria, Germany, and Cerin in France.


Sign in / Sign up

Export Citation Format

Share Document