scholarly journals Effects of auxin and urea derivatives on adventitious rooting in chestnut and oak microshoots

2020 ◽  
Vol 67 (1-2) ◽  
pp. 52-68 ◽  
Author(s):  
Jesús M. Vielba ◽  
Nieves Vidal ◽  
Ada Ricci ◽  
Ricardo Castro ◽  
Purificación Covelo ◽  
...  

The present study investigated how auxin concentration and the method of application affected the formation of adventitious roots in microshoots of chestnut (Castanea sativa) and oak (Quercus robur). The activity of two urea derivatives (2, 3-MDPU and 3, 4-MDPU) was also evaluated. Microshoots were derived from basal sprouts of two mature chestnut trees (P1 and P2) and one adult oak genotype (Sainza). In chestnut, rooting percentage was positively affected by auxin in a dose-dependent manner, particularly in shoots treated with the hormone for 24 h. The effect of auxin on rooting also differed depending on the application method. In shoots treated for 24 h, the highest concentration of auxin produced the healthiest rooted plantlets, in terms of the root system and shoot quality. By contrast, in shoots treated by the basal quick-dip method, the shoot quality was best at the lowest auxin concentration. The effect of urea derivatives on the root system depended on the species as well as on the auxin concentration and application period. Use of the MDPUs improved the root system architecture of auxin-treated shoots by promoting lateral root development and triggering the synchronous initiation of root primordia at the base of the shoot. Shoot quality was also improved by MDPUs, which promoted resumption of growth and reduced shoot-tip necrosis.

2011 ◽  
Vol 57 (No. 9) ◽  
pp. 418-422 ◽  
Author(s):  
H.J. Gao ◽  
H.Q. Yang

 The time-dependent production of nitric oxide (NO) in roots induced by indole-3-butyric acid (IBA) and the effect of sodium nitroprusside (SNP) on root architecture development were investigated, using Malus hupehensis Rehd. seedlings. Following IBA application, a very rapid increase in NO formation and a subsequent second wave of NO burst was observed, which was related to the induction of lateral roots (LRs) and the organogenesis of lateral root primordia (LRP), respectively. The first NO burst was correlated with the second and the two peaks of NO burst induced by IBA were totally abolished by 3,3’,4’,5,7-pentahydroxyflavone (quercetin). Exogenous NO promoted the emergence and elongation of LR and inhibited the elongation of primary root (PR) in a dose-dependent manner: low concentrations of SNP promoted both the amounts and the elongation of LR but inhibited the elongation of LR and PR at higher concentrations. It was concluded that (i) the rapid production of NO induced by IBA was correlated with the IBA-induced initiation of LR; (ii) quercetin inhibition of IBA-induced LR formation was correlated with the quercetin inhibition of IBA-induced NO biosynthesis, and (iii) exogenous NO affects the development of root system architecture in a dose-dependent manner.


2021 ◽  
Author(s):  
Ming-Yue Wei ◽  
Huan Li ◽  
You-Hui Zhong ◽  
Zhi-Jun Shen ◽  
Dong-Na Ma ◽  
...  

Abstract Background and aims Kandelia obovata, a dominant mangrove species in China, produces complex buttress roots and prop roots in intertidal wetlands where high quantities of nitric oxide (NO) are produced by reducing sediments. NO, a key signaling molecule, participates in an array of plant physiological and developmental processes. However, it is unclear whether NO functions in K. obovata root system establishment. Methods Here, we used a transcriptomic approach to investigate the potential role of NO in the regulation of K. obovata lateral root development and growth. Transcript profiles and bioinformatics analyses were used to characterize potential regulatory mechanisms. Results NO enhanced K. obovata lateral root development and growth in a dose-dependent manner. RNA-seq analysis identified 1,593 differentially expressed genes (DEGs), of which 646 and 947 were up- and down-regulated in roots treated with NO donor. Functional annotation analysis demonstrated that the starch and sucrose pathway was significantly induced in response to NO. A suite of DEGs involved in hormone signal transduction and cell wall metabolism was also differentially regulated by NO. Taken together, our results suggest that a complex interaction between energy metabolism, multiple hormone signaling pathways, and cell wall biosynthesis is required for the NO regulation on lateral root development and growth in mangrove plant K. obovata. Conclusion NO appears to contribute to the formation of the unique root system of mangrove plants.


HortScience ◽  
2001 ◽  
Vol 36 (1) ◽  
pp. 66-68 ◽  
Author(s):  
R.E. Gough

In 1999, `Sweet Banana' pepper [Capsicum annuum L. (Grossum Group)] plants were grown under clean cultivation or with red, silver, or black polyethylene selective reflecting (SMR) mulches over the soil surface. Plants in each of three replications per treatment were field-set on 15 June. On 22 Sept., the plants were excavated and their root systems examined using a trench profile method and a succession of trench wall slices. The total numbers of roots of each plant at depths of 5, 10, 15, 20, and 25 cm and 10, 20, 30, 40, 50, and 60 cm from the plant stem were recorded. Distribution and architecture of the root systems were also examined. Plants grown under clean cultivation developed 50 to 60 adventitious roots each, while those grown under red mulch developed ≈20 and those under black and silver mulch about nine adventitious roots each. In all treatments, the adventitious roots radiated downward from the stem at an angle of 35° from the horizontal. No plants had vertical roots. Root system architecture was similar among treatments, with 40% of the roots in the upper 5 cm of soil and 70% in the upper 10 cm. Thirty percent of the roots were within 10 cm, 50% within 20 cm, and nearly 100% within 40 cm of the stem. Root numbers decreased with increasing depth and distance from the stem. The greatest number of lateral roots were produced under silver mulch, intermediate numbers under clean cultivation and black mulch, and the fewest roots under red mulch. Colored mulches influenced the total number of adventitious and lateral roots but not the root system architecture of pepper plants.


1990 ◽  
Vol 63 (03) ◽  
pp. 505-509 ◽  
Author(s):  
Thomas Mätzsch ◽  
David Bergqvist ◽  
Ulla Hedner ◽  
Bo Nilsson ◽  
Per Østergaar

SummaryA comparison between the effect of low molecular weight heparin (LMWH) and unfragmented heparin (UH) on induction of osteoporosis was made in 60 rats treated with either UH (2 IU/ g b w), LMWH in 2 doses (2 Xal U/g or 0.4 Xal U/g) or placebo (saline) for 34 days. Studied variables were: bone mineral mass in femora; fragility of humera; zinc and calcium levels in serum and bone ash and albumin in plasma. A significant reduction in bone mineral mass was found in all heparin-treated rats. There was no difference between UH and LMWH in this respect. The effect was dose-dependent in LMWH-treated animals. The zinc contents in bone ash were decreased in all heparin-treated rats as compared with controls. No recognizable pattern was seen in alterations of zinc or calcium in serum. The fragility of the humera, tested as breaking strength did not differ between treatment groups and controls. In conclusion, if dosed according to similar factor Xa inhibitory activities, LMWH induces osteoporosis to the same extent as UH and in a dose-dependent manner. The zinc content in bone ash was decreased after heparin treatment, irrespective of type of heparin given.


1996 ◽  
Vol 76 (01) ◽  
pp. 111-117 ◽  
Author(s):  
Yasuto Sasaki ◽  
Junji Seki ◽  
John C Giddings ◽  
Junichiro Yamamoto

SummarySodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1), are known to liberate nitric oxide (NO). In this study the effects of SNP and SIN-1 on thrombus formation in rat cerebral arterioles and venules in vivo were assessed using a helium-neon (He-Ne) laser. SNP infused at doses from 10 Μg/kg/h significantly inhibited thrombus formation in a dose dependent manner. This inhibition of thrombus formation was suppressed by methylene blue. SIN-1 at a dose of 100 Μg/kg/h also demonstrated a significant antithrombotic effect. Moreover, treatment with SNP increased vessel diameter in a dose dependent manner and enhanced the mean red cell velocity measured with a fiber-optic laser-Doppler anemometer microscope (FLDAM). Blood flow, calculated from the mean red cell velocity and vessel diameters was increased significantly during infusion. In contrast, mean wall shear rates in the arterioles and venules were not changed by SNP infusion. The results indicated that SNP and SIN-1 possessed potent antithrombotic activities, whilst SNP increased cerebral blood flow without changing wall shear rate. The findings suggest that the NO released by SNP and SIN-1 may be beneficial for the treatment and protection of cerebral infarction


2018 ◽  
Vol 1 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Darío Acuña-Castroviejo ◽  
Maria T Noguiera-Navarro ◽  
Russel J Reiter ◽  
Germaine Escames

Due to the broad distribution of extrapineal melatonin in multiple organs and tissues, we analyzed the presence and subcellular distribution of the indoleamine in the heart of rats. Groups of sham-operated and pinealectomized rats were sacrificed at different times along the day, and the melatonin content in myocardial cell membranes, cytosol, nuclei and mitochondria, were measured. Other groups of control animals were treated with different doses of melatonin to monitor its intracellular distribution. The results show that melatonin levels in the cell membrane, cytosol, nucleus, and mitochondria vary along the day, without showing a circadian rhythm. Pinealectomized animals trend to show higher values than sham-operated rats. Exogenous administration of melatonin yields its accumulation in a dose-dependent manner in all subcellular compartments analyzed, with maximal concentrations found in cell membranes at doses of 200 mg/kg bw melatonin. Interestingly, at dose of 40 mg/kg b.w, maximal concentration of melatonin was reached in the nucleus and mitochondrion. The results confirm previous data in other rat tissues including liver and brain, and support that melatonin is not uniformly distributed in the cell, whereas high doses of melatonin may be required for therapeutic purposes.


Contrast- induced nephropathy (CIN) is an elevation of serum creatinine of ≥ 0.5 mg/dL from baseline after two to three days of exposure to contrast substance if there is no other cause for acute kidney injury. Atorvastatin may protect normal kidney physiology from contrast- induced kidney injury by effects unrelated to hypolipidemia termed pleiotropic effect by decline of endothelin production, angiotensin system down regulation, and under expression of endothelial adhesion molecules. This study was conducted to assess the strategy by which atorvastatin can achieve protective effect for kidneys after exposure to contrast media in an animal model. A 40 male rats were distributed randomly into 4 groups; ten rats for each: group (1): given normal saline; group (2): CIN group given iopromide as contrast media; group (3): given atorvastatin (20mg/kg) and iopromide; and group (4): given atorvastatin (40mg/kg) and iopromide. Blood collected by cardiac puncture for detection of serum glutathione, malondialdehyde, matrix metalloproteinase-9, and interleukin-18. The results have shown a significant increase in inflammatory and oxidative stress markers in contrast media group, and significant reduction in these markers in atorvastatin treated groups, in a dose-dependent manner. As conclusion, atorvastatin mechanism for protection against CIN in a dose-dependent manner can mediate by anti-inflammatory and antioxidant effects.


1984 ◽  
Vol 107 (3) ◽  
pp. 395-400 ◽  
Author(s):  
Itaru Kojima ◽  
Etsuro Ogata ◽  
Hiroshi Inano ◽  
Bun-ichi Tamaoki

Abstract. Incubation of 18-hydroxycorticosterone with the sonicated mitochondrial preparation of bovine adrenal glomerulosa tissue leads to the production of aldosterone, as measured by radioimmunoassay. The in vitro production of aldosterone from 18-hydroxycorticosterone requires both molecular oxygen and NADPH, and is inhibited by carbon monoxide. Cytochrome P-450 inhibitors such as metyrapone, SU 8000. SU 10603, SKF 525A, amphenone B and spironolactone decrease the biosynthesis of aldosterone from 18-hydroxycorticosterone. These results support the conclusion that the final reaction in aldosterone synthesis from 18-hydroxycorticosterone is catalyzed by an oxygenase, but not by 18-hydroxysteroid dehydrogenase. By the same preparation, the production of [3H]aldosterone but not [3H]18-hydroxycorticosterone from [1,2-3H ]corticosterone is decreased in a dose-dependent manner by addition of non-radioactive 18-hydroxycorticosterone.


2014 ◽  
Vol 25 (3-4) ◽  
pp. 24-33
Author(s):  
O. I. Dzjuba ◽  
M. V. Yatsenko

The article deals with the history of the study and the current state of research of physiological and biochemical properties of the plant genus Sedum that are useful for human and has been used in folk medicine for many years. It was noticed that antioxidant properties of extracts from plants S. sarmentosum, S. sempervivoides, S. takesimense were caused by the presence of phenolic compounds. Methanol extract of plants S. takesimense exhibited strong scavenging activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals as well as significant inhibitory effects on lipid peroxidation and low density lipoprotein (LDL) oxidation induced by a metal ion Cu2+. Various immunomodulatory activities of various fractions of plants extracts (S. dendroideum, S. kamtschaticum, S. sarmentosum, S. telephium) are observed. It was shown that the ethanol extract of S. sarmentosum and it’s fractions suppressed specific antibody and cellular responses to ovalbumin in mice. The methanol extract of plants S. sarmentosum reduced the levels of anti-inflammatory markers, such as volume of exudates, number of polymorphonuclear leukocytes, suppressed nitric oxide synthesis in activated macrophages via suppressed induction of inducible nitric oxide synthase (iNOS). Polysaccharides fractions from plants S. telephium inducing productions of tumor necrosis factor alpha (TNF-α), increasing the intensity of phagocytosis in vitro and in vivo. Methanol extract from the whole part of S. kamtschaticum strongly inhibit PGE2 production from lipopolysaccharide-induced RAW 264.7 cells, a mouse macrophage cell line via modulating activity in gene expression of the enzyme cyclooxygenase-2 (COX-2). The methanol extract of plants S. sarmentosum and the major kaempferol glycosides from S. dendroideum have antinociceptive activity. It was noticed that anti-adipogenic activity of extracts from plants S. kamtschaticum were caused by inhibition of peroxisome-proliferator-activated receptor γ (PPARγ) expression and it’s dependent target genes, such as genes encoding adipocyte protein 2 (аР2), lipoprotein lipase (LPL), adiponectin and CD36. Polysaccharides fractions from S. telephium cause inhibition of cell adhesion of human fibroblast (MRC5) to laminin and fibronectin via interfere with integrin-mediated cell behaviour and they contributed to the role of polysaccharides in cell-matrix interaction. The methanol extract of plants S. sarmentosum exhibited a significant inhibitory activity in the chick embryo chorioallantoic membrane angiogenesis in a dose-dependent manner. The crude alkaloid fraction of S. sarmentosum caused a dose-dependent inhibition of cell proliferation on murine hepatoma cell line BNL CL.2 and human hepatoma cell line HepG2 without necrosis or apoptosis. Alkaloids from plants S. sarmentosum may improve survival of hepatoma patients via the inhibition of excessive growth of tumor cells. Plant’s juices have antiviral activity (S. sarmentosum, S. spurium, S. stahlii). Crude ethanol extract S. praealtum have spermicidal activity of the in mice and a relevant inhibitory effect of aqueous extract on human spermatozoa motility as well as an anti-fertilizing activity in rats. Hepatoprotective triterpenes, e.g., δ-amyrone, 3-epi-δ-amyrin, δ-amyrin and sarmentolin were isolated from S. sarmentosum. 2- and 2,6-substituted piperidine alkaloids (e.g., norsedamine, allosedridine, sedamine, allosedamine) are observed in plants S. acre, which in the presence of data on the use of pyridine and piperidine derivatives for treating neurodegenerative diseases (e.g., Alzheimer's disease), points on the promising research in this area. Taking into account that biologically active compounds are accumulated in the aboveground vegetative organs of plants of Sedum, the prospects of further study of the use of Sedum for the purposes of biotechnology and in the pharmaceutical industry becomes apparent. This work extends the existing views regarding the use of plants Sedum.


Sign in / Sign up

Export Citation Format

Share Document