Cedroxylon shakhtnaense (Blokhina 2010) Dolezych, Mantzouka et L.Kunzmann comb. nov.; A fossil Abies wood from the late early Miocene Mastixioideae flora of Wiesa (east Germany)

IAWA Journal ◽  
2021 ◽  
pp. 1-22
Author(s):  
Martina Dolezych ◽  
Dimitra Mantzouka ◽  
Lutz Kunzmann

Abstract We describe the first evidence of fossil Abies wood from the late early Miocene fossil plant assemblage of Wiesa in east Germany. The comparatively well-preserved piece of xylitic wood was recovered in the kaolin quarry at Hasenberg hill in Wiesa. The Wiesa assemblage is characterized as being allochthonous and partly parautochthonous mass deposits of diaspores, leaves, and wood. The latter component is rather incompletely studied so far. The described fossil is characterized by high rays, mostly uniseriate bordered pits, generally thick and pitted horizontal and tangential ray cell walls, but also partly smooth horizontal ray cell walls, absence of ray tracheids, the occurrence of traumatic resin canals, and rare occurrence of axial parenchyma of two types. This type of fossil wood has been described as Abietoxylon shakhtnaense Blokhina from the Oligo-Miocene of Sakhalin, Russia. Due to nomenclatural issues of Abietoxylon a recombination to Cedroxylon Kraus emend. Gothan is proposed following common practice for affiliation of abietoid fossil wood of Cenozoic age. Cedroxylon shakhtnaense comb. nov. shares anatomical characteristics with the wood of extant Abies Mill., in particular with sections Abies and Grandis, and is most closely related to section Grandis. The properly preserved fossil wood from Wiesa provides the opportunity of applying qualitative and quantitative analyses for testing and discussing its placement in relationship to intra-tree variability and ontogenetic aspects. The first evidence of fossil wood of Abies from Wiesa confirms again the presence of the genus in mid-latitude subtropical zonal vegetation during the beginning of the Miocene Climatic Optimum.

2017 ◽  
Vol 183 (3) ◽  
pp. 334-347 ◽  
Author(s):  
Mariana Brea ◽  
Alejandro F. Zucol ◽  
M. Susana Bargo ◽  
Juan Carlos Fernicola ◽  
Sergio F. Vizcaíno
Keyword(s):  

2020 ◽  
Vol 11 ◽  
Author(s):  
Tayebeh Abedi ◽  
Romain Castilleux ◽  
Pieter Nibbering ◽  
Totte Niittylä

Plant cell wall associated hydroxyproline-rich glycoproteins (HRGPs) are involved in several aspects of plant growth and development, including wood formation in trees. HRGPs such as arabinogalactan-proteins (AGPs), extensins (EXTs), and proline rich proteins (PRPs) are important for the development and architecture of plant cell walls. Analysis of publicly available gene expression data revealed that many HRGP encoding genes show tight spatio-temporal expression patterns in the developing wood of Populus that are indicative of specific functions during wood formation. Similar results were obtained for the expression of glycosyl transferases putatively involved in HRGP glycosylation. In situ immunolabelling of transverse wood sections using AGP and EXT antibodies revealed the cell type specificity of different epitopes. In mature wood AGP epitopes were located in xylem ray cell walls, whereas EXT epitopes were specifically observed between neighboring xylem vessels, and on the ray cell side of the vessel walls, likely in association with pits. Molecular mass and glycan analysis of AGPs and EXTs in phloem/cambium, developing xylem, and mature xylem revealed clear differences in glycan structures and size between the tissues. Separation of AGPs by agarose gel electrophoresis and staining with β-D-glucosyl Yariv confirmed the presence of different AGP populations in phloem/cambium and xylem. These results reveal the diverse changes in HRGP-related processes that occur during wood formation at the gene expression and HRGP glycan biosynthesis levels, and relate HRGPs and glycosylation processes to the developmental processes of wood formation.


IAWA Journal ◽  
2001 ◽  
Vol 22 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Peter Kitin ◽  
Yuzou Sano ◽  
Ryo Funada

A resin-casting method with subsequent scanning electron microscopy (SEM) was used to examine the three-dimensional (3-D) shapes of cells and the cell walls of cambium and differentiating xylem. Glutaraldehyde- fixed and dehydrated specimens were embedded in polystyrene and then organic material was removed by digestion with acidic solutions or enzymes. The acidic solutions used for treatment were sulphuric acid and a mixture of acetic acid and hydrogen peroxide and the enzymes used for treatment were pectinase and cellulase, with a final treatment with sodium hypochlorite. Both methods could be used for studies of the differentiation of cambial cells; however, digestion with enzymes allowed better preservation of the 3-D organisation of the tissue. Negative replicas of inner surfaces of cell walls of differentiating vessel elements revealed the sequential stages of the development of bordered pits and perforation plates. Future bordered pits at the early stages of the differentiation of cell walls were demarcated by the accumulation of organic material between adjacent pit membranes. Subsequent deposition of cell wall material resulted in formation of pit cavities and the rims of perforation plates.


2020 ◽  
pp. 43-50
Author(s):  
Dieter Uhl ◽  
Michael Wuttke ◽  
André Jasper

A variety of traces of pre-charring decay are described from coniferous charcoals from the Norken locality, stratigraphically positioned within the Breitscheid Formation (Late Oligocene, Chattian) of the Westerwald area (Rhineland-Palatinate; W Germany). The traces include three-dimensionally preserved as well as collapsed fungal hyphae, collapsed filamentous structures (maybe related to ascomycetes), so-called shot-like holes of different diameters in cell walls of tracheids, as well as crater-like structures on the surface of tracheid walls. The latter occur on tracheids with bordered pits, in the direct vicinity of charred phloem (so far only rarely reported from pre-Quaternary charcoal). These observations, together with evidence that some of the charcoal fragments originated from wood that dried out prior to charring, point to a surface fire as the most likely source of the charcoal, although it cannot totally be ruled out that (partly) dead but still standing trees were affected during a crown fire. The data from the Late Oligocene of Norken provide further evidence that pre-Quaternary charcoal can be used as an additional, so far largely underutilized source for additional information about plant– microorganism interactions in deep time.


2017 ◽  
Vol 11 (1) ◽  
pp. 123-141
Author(s):  
Sherwin Carlquist

The nature of conduction involves movement of a liquid (under tension or pressure) through a solid (cell walls necessary to direct the liquid and provide mechanical strength). The numerous consequences of the liquid/solid nature of the conductive interface in plants can be viewed as a series of conflicting requirements that are resolved by various mechanisms. For example, the types of mechanical strength conferred by thicker cell walls (latewood) run counter to optimal conduction (earlywood). Conflict resolution situations are examined with light microscopy and SEM to show in detail not merely conflicting requirements but the various types of resolution in various conifers. Abies is presented as exemplary of a cool temperate conifer with numerous aspects to earlywood/latewood structure. Tropical conifers (Araucaria) present different compromises; the riparian conifer Dacrydium guillauminii has only earlywood; the parasitic conifer Parasitaxus has only latewood. Particular conifers have only some of the features by which latewood differs from earlywood. Cell dimorphism is only one aspect of resolution of conflicting requirements; others include modifications in pit size, shape, and density; the nature of the pit membrane; the nature of the pit cavity, pit border and pit aperture; and surface relief (warty layer) of the tracheid wall. The invention of coniferous bordered pits involves a circular shape, so that tension on the margo strands is equal, and thus the pit can be closed. These factors and margo pore maximization necessitate expending a large amount of space to pits in earlywood, the strength of which is thereby lessened and must be compensated by greater wall strength in latewood. The paper concludes with a series of twenty features which represent resolutions of conflicting requirements in terms of anatomical structure. Wood physiological literature is integrated with the anatomical observations.


IAWA Journal ◽  
2015 ◽  
Vol 36 (2) ◽  
pp. 167-185 ◽  
Author(s):  
Dagmar Dietrich ◽  
Mike Viney ◽  
Thomas Lampke

Fascination with petrified wood has stimulated interest in understanding the process of natural petrifaction. Early attempts of modeling natural petrifaction in the laboratory have been limited to mimicking incipient permineralization resulting in the creation of silica casts of pore spaces and inner cell walls. Silica lithomorphs produced through artificial silicification provided a possible avenue for studying microstructure of wood. More recently artificial petrifaction is motivated by the goal of creating advanced ceramic materials for engineering applications. The concept of using wood as a biotemplate has led to the creation of porous ceramics by cell wall replacement. To some extent artificial and natural petrifaction processes are comparable; although, some of the materials and procedures used in the laboratory are not found in nature. Research focused on the composition and structure of fossil wood from different-aged deposits is compared with research focused on the development of wood-templated porous ceramics. Differences and similarities in the pathways of natural silicification and creation of biomorphous ceramics are discussed. The comparison between artificial and natural silicification highlights the particular significance of the degree to which (de)lignification is needed for silica permeation.


Holzforschung ◽  
2017 ◽  
Vol 72 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Anuj Kumar ◽  
Jan Richter ◽  
Jan Tywoniak ◽  
Petr Hajek ◽  
Stergios Adamopoulos ◽  
...  

AbstractThe present research deals with a simple dipping method to insert octadecyltrichlorosilane (OTS) into cell walls of spruce wood and to deposit OTS layers on its inner and outer surfaces. Distribution and chemical interactions of OTS with wood polymers has been investigated by scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The OTS/n-hexane solution penetrated into wood via capillary forces through ray tracheids and bordered pits and was deposited as OTS organic-inorganic layers on wood cell walls. The hypothesis is supported by the results, according to which the OTS molecules are hydrolysed by the wood moisture and by free OH groups of the cell wall components. The hydrolysed OTS molecules react with the OH groups and elevate the hydrophobicity of wood.


1987 ◽  
Vol 17 (10) ◽  
pp. 1257-1264 ◽  
Author(s):  
M. R. McKevlin ◽  
D. D. Hook ◽  
W. H. Mckee Jr. ◽  
S. U. Wallace ◽  
J. R. Woodruff

Loblolly pine seedlings were grown under flooded and drained conditions in a greenhouse pot study. Flooded roots developed aerenchyma tissue within the stele between the xylem poles, extending from the phloem outward to the pericycle. Large intercellular spaces were present in the pericyclic parenchyma within the phellogen of flooded woody roots. Flooded stems exhibited lenticel hypertrophy. Large intercellular spaces in the cortex were continuous with intercellular spaces in the pericyclic parenchyma of the root. Flooding of roots generally resulted in accumulation of Fe on the epidermal surface and in as well as between cortical cell walls inward to the endodermis. Fe accumulated in and between the precursor phloem cells and became more evident in the region of maturation. In roots with secondary thickening, little Fe was visible in the phloem but was present in helical secondary walls of tracheids. Fe also accumulated on and in bordered pits of root tracheids. Results suggest that flooded loblolly pine seedlings possess a limited internal aeration system and that diffusion of oxygen into the root system may be responsible for the presence of oxidized Fe within the stele.


2017 ◽  
Vol 57 (2) ◽  
pp. 237-338 ◽  
Author(s):  
Thomas Denk ◽  
Tuncay H. Güner ◽  
Zlatko Kvaček ◽  
Johannes M. Bouchal

AbstractThe early Burdigalian (MN3) plant assemblage of the Güvem area (northwestern Central Anatolia) is preserved in lacustrine sediments of the Dereköy pyroclastics. Its age is well constrained by radiometric dates of basaltic rocks bracketing the pyroclastics, making the Güvem flora one of the extremely few precisely dated early Miocene floras in the Mediterranean region. The rich assemblage of impression fossils comprises ferns and fern allies (2 species), gymnosperms (12 spp.) and angiosperms (129 spp.).Ilex miodipyrenasp. nov. is described as a new fossil-species. The most diverse families in the assemblage are the Fagaceae with 12 taxa and the Fabaceae with 12 leaf morphotypes and one fruit taxon. Aquatic plants are represented by seven taxa, riparian (including palms) and swamp forest elements by >35 taxa, and lianas by three taxa (Smilaxspp.,Chaneya). The relatively large number of aquatic and riparian/swamp elements is congruent with the rich fish, amphibian and reptile record of the Güvem area. Another characteristic feature of the plant assemblage is the presence of various lobed leaves which show similarities with modern species of different families (e.g.Alangium, various Malvales). Trees and shrubs growing on well-drained soils and forming closed-canopy and open-canopy forests are the most diversified group (>70 taxa). In terms of number of specimens in the collection and based on field observations, by far the most abundant leaf fossils belong to evergreen oaks ofQuercus drymejaandQ. mediterraneaand to various types of foliage that cannot be assigned to a particular extant or extinct genus of Fagaceae. These sclerophyllous trees must have covered vast areas surrounding the wetlands that developed during the early Miocene in the Güvem Basin. Based on a recent reassessment of the ecology and taxonomic affinity of these trees, they are considered to reflect humid temperate climatic conditions but with a brief drier season during the winter months. These forests are more similar to the laurel forests of the southeastern United States and those stretching in a narrow belt south of the Himalayas to eastern central China. The large number of Fabaceae may indicate the presence of warm subtropical environments but this is difficult to assess, as they are known for having wide ecological ranges today and in the past. All in all, a larger part of the plant taxa point to forested vegetation. This is in agreement with previous palynological studies which detected only small amounts of herbaceous and grass pollen. Open patches of vegetation may have been restricted to river banks and to rocky areas in a volcanic landscape. The biogeographic patterns detected for the early Miocene of the Güvem assemblage are manifold; most taxa are widespread Northern Hemispheric elements. A substantial part of the species migrated from Asia into Europe during the (late) Paleogene and reached Anatolia during the early Miocene (Fagus,Paliurus,Chaneya,Ailanthus,Quercus kubinyii,Davallia haidingeri,Acer angustilobum,A. palaeosaccharinum). Fewer taxa may have been in Anatolia before they migrated to Europe (e.g.Nerium,Smilax miohavanensis,Quercus sosnowskyi). Finally, very few taxa are Anatolian endemics (e.g.Ilex miodipyrena).


Sign in / Sign up

Export Citation Format

Share Document