3D Histology Using the Synchrotron Radiation Propagation Phase Contrast Cryo-microCT

2018 ◽  
Vol 31 (4) ◽  
pp. 133
Author(s):  
Ju-Heon Kim ◽  
Sung-Mi Han ◽  
Hyun-Ouk Song ◽  
Youn-Kyung Seo ◽  
Young-Suk Moon ◽  
...  
2017 ◽  
Vol 354 ◽  
pp. 1-8 ◽  
Author(s):  
Mai Elfarnawany ◽  
Seyed Alireza Rohani ◽  
Soroush Ghomashchi ◽  
Daniel G. Allen ◽  
Ning Zhu ◽  
...  

2015 ◽  
Vol 60 (3) ◽  
pp. N21-N34 ◽  
Author(s):  
Mariaconcetta Longo ◽  
Luigi Rigon ◽  
Frances C M Lopez ◽  
Rongchang Chen ◽  
Diego Dreossi ◽  
...  

Author(s):  
Renata Longo ◽  
Maura Tonutti ◽  
Luigi Rigon ◽  
Fulvia Arfelli ◽  
Diego Dreossi ◽  
...  

The first clinical study of phase-contrast mammography (PCM) with synchrotron radiation was carried out at the Synchrotron Radiation for Medical Physics beamline of the Elettra synchrotron radiation facility in Trieste (Italy) in 2006–2009. The study involved 71 patients with unresolved breast abnormalities after conventional digital mammography and ultrasonography exams carried out at the Radiology Department of Trieste University Hospital. These cases were referred for mammography at the synchrotron radiation facility, with images acquired using a propagation-based phase-contrast imaging technique. To investigate the contribution of phase-contrast effects to the image quality, two experienced radiologists specialized in mammography assessed the visibility of breast abnormalities and of breast glandular structures. The images acquired at the hospital and at the synchrotron radiation facility were compared and graded according to a relative seven-grade visual scoring system. The statistical analysis highlighted that PCM with synchrotron radiation depicts normal structures and abnormal findings with higher image quality with respect to conventional digital mammography.


1998 ◽  
Vol 5 (5) ◽  
pp. 1243-1249 ◽  
Author(s):  
José I. Espeso ◽  
Peter Cloetens ◽  
José Baruchel ◽  
Jürgen Härtwig ◽  
Trevor Mairs ◽  
...  

The lateral coherence length is of the order of 100 µm at the `long' (145 m) ID19 beamline of the ESRF, which is mainly devoted to imaging. Most of the optical elements located along the X-ray path can thus act as `phase objects', and lead to spurious contrast and/or to coherence degradation, which shows up as an enhanced effective angular size of the source. Both the spurious contrast and the coherence degradation are detrimental for the images (diffraction topographs, tomographs, phase-contrast images) produced at this beamline. The problems identified and the way they were solved during the commissioning of ID19 are reported. More particularly, the role of the protection foils located in the front end, the beryllium windows, the filters and the monochromator defects (scratches, dust, small vibrations) is discussed.


2017 ◽  
Vol 24 (2) ◽  
pp. 482-489 ◽  
Author(s):  
Jianzhong Hu ◽  
Ping Li ◽  
Xianzhen Yin ◽  
Tianding Wu ◽  
Yong Cao ◽  
...  

The spinal cord is the primary neurological link between the brain and other parts of the body, but unlike those of the brain, advances in spinal cord imaging have been challenged by the more complicated and inhomogeneous anatomy of the spine. Fortunately with the advancement of high technology, phase-contrast synchrotron radiation microtomography has become widespread in scientific research because of its ability to generate high-quality and high-resolution images. In this study, this method has been employed for nondestructive imaging of the internal microstructure of rat spinal cord. Furthermore, digital virtual slices based on phase-contrast synchrotron radiation were compared with conventional histological sections. The three-dimensional internal microstructure of the intramedullary arteries and nerve fibers was vividly detected within the same spinal cord specimen without the application of a stain or contrast agent or sectioning. With the aid of image post-processing, an optimization of vessel and nerve fiber images was obtained. The findings indicated that phase-contrast synchrotron radiation microtomography is unique in the field of three-dimensional imaging and sets novel standards for pathophysiological investigations in various neurovascular diseases.


2019 ◽  
Vol 8 (8) ◽  
pp. 1117 ◽  
Author(s):  
Gaetano Scaramuzzo ◽  
Ludovic Broche ◽  
Mariangela Pellegrini ◽  
Liisa Porra ◽  
Savino Derosa ◽  
...  

Modern ventilatory strategies are based on the assumption that lung terminal airspaces act as isotropic balloons that progressively accommodate gas. Phase contrast synchrotron radiation computed tomography (PCSRCT) has recently challenged this concept, showing that in healthy lungs, deflation mechanisms are based on the sequential de-recruitment of airspaces. Using PCSRCT scans in an animal model of acute respiratory distress syndrome (ARDS), this study examined whether the numerosity (ASnum) and dimension (ASdim) of lung airspaces change during a deflation maneuver at decreasing levels of positive end-expiratory pressure (PEEP) at 12, 9, 6, 3, and 0 cmH2O. Deflation was associated with significant reduction of ASdim both in the whole lung section (passing from from 13.1 ± 2.0 at PEEP 12 to 7.6 ± 4.2 voxels at PEEP 0) and in single concentric regions of interest (ROIs). However, the regression between applied PEEP and ASnum was significant in the whole slice (ranging from 188 ± 52 at PEEP 12 to 146.4 ± 96.7 at PEEP 0) but not in the single ROIs. This mechanism of deflation in which reduction of ASdim is predominant, differs from the one observed in healthy conditions, suggesting that the peculiar alveolar micromechanics of ARDS might play a role in the deflation process.


Sign in / Sign up

Export Citation Format

Share Document