Hypoxia-induced Upregulation Of CX3CL1/Fractalkine Expression Is Mediated Through PI3K/Akt- And P38 MAPK-Signaling In Cultured Human Lung Microvascular Endothelial Cells

Author(s):  
Saba Lodhi ◽  
Nadia L. Palma ◽  
Jawaharlal M. Patel ◽  
Jianliang Zhang
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Zhu Hai-Yan ◽  
Gao Yong-Hong ◽  
Wang Zhi-Yao ◽  
Xu Bing ◽  
Wu Ai-Ming ◽  
...  

Astragalus polysaccharide is a major component of radix astragali, a vital qi-reinforcing herb medicine with favorable immune-regulating effects. In a previous animal experiment, we demonstrated that astragalus polysaccharide effectively alleviates ischemia-reperfusion injury (IRI) of cardiac muscle through the regulation of the inflammatory reactions. However, the relationship between this herb and the cohesion molecules on the cell surface remains controversial. In this study, human cardiac microvascular endothelial cells (HCMECs) were used to validate the protective effects of astragalus under an IRI scheme simulated through hypoxia/reoxygenation in vitro. The results indicated that astragalus polysaccharide inhibited the cohesion between HCMECs and polymorphonuclear leukocyte (PMN) during IRI through the downregulation of p38 MAPK signaling and the reduction of cohesive molecule expression in HCMECs.


2020 ◽  
Vol 40 (5) ◽  
pp. 1195-1206 ◽  
Author(s):  
Danting Cao ◽  
Andrew M. Mikosz ◽  
Alexandra J. Ringsby ◽  
Kelsey C. Anderson ◽  
Erica L. Beatman ◽  
...  

Objective: MicroRNA-126-3p (miR-126) is required for angiogenesis during organismal development or the repair of injured arterial vasculature. The role of miR-126 in lung microvascular endothelial cells, which are essential for gas exchange and for lung injury repair and regeneration, remains poorly understood. Considering the significant heterogeneity of endothelial cells from different vascular beds, we aimed to determine the role of miR-126 in regulating lung microvascular endothelial cell function and to elucidate its downstream signaling pathways. Approach and Results: Overexpression and knockdown of miR-126 in primary human lung microvascular endothelial cells (HLMVEC) were achieved via transfections of miR-126 mimics and antisense inhibitors. Increasing miR-126 levels in HLMVEC reduced cell proliferation, weakened tube formation, and increased cell apoptosis, whereas decreased miR-126 levels stimulated cell proliferation and tube formation. Whole-genome RNA sequencing revealed that miR-126 was associated with an antiangiogenic and proapoptotic transcriptomic profile. Using validation assays and knockdown approaches, we identified that the effect of miR-126 on HLMVEC angiogenesis was mediated by the LAT1 (L-type amino acid transporter 1), via regulation of mTOR (mammalian target of rapamycin) signaling. Furthermore, downregulation of miR-126 in HLMVEC inhibited cell apoptosis and improved endothelial tube formation during exposure to environmental insults such as cigarette smoke. Conclusions: miR-126 inhibits HLMVEC angiogenic function by targeting the LAT1-mTOR signaling axis, suggesting that miR-126 inhibition may be useful for conditions associated with microvascular loss, whereas miR-126 augmentation may help control unwanted microvascular angiogenesis.


2005 ◽  
Vol 53 (9) ◽  
pp. 1121-1129 ◽  
Author(s):  
Masakazu Fujiwara ◽  
Enjing Jin ◽  
Mohammad Ghazizadeh ◽  
Oichi Kawanami

Protease-activated receptors (PARs) are multifunctional G protein–coupled receptors. Among the four existing PARs, PAR4 is preferentially expressed in the human lung tissue. However, the function of PAR4 has not been defined in the lung endothelial cells. Because PAR1-mediated cellular effects are deeply related to the morphological changes, we focused on the actin fiber and p38 mitogen-activated protein kinase (MAPK) signaling involved in actin polymerization to elucidate the role of PAR4. RT-PCR and Western blot analyses identified PAR4 expression in human pulmonary artery endothelial cells and in human microvascular endothelial cells from lung. We then examined the changes in actin fibers in endothelial cells treated with PAR4-activating peptide. PAR1-activating peptide was used for comparison. Activation of PAR4 and PAR1 by their corresponding peptides induced actin fiber formation; however, the actin filaments were broadly bundled in PAR4 as compared with the ringlike actin filaments in PAR1 activation. Correspondingly, the magnitude of p38 MAPK phosphorylation was different between cells treated with PAR4 and PAR1, with PAR4-activating peptide showing a significantly higher sensitivity to p38 MAPK inhibitor, SB203580. Taken together, these results demonstrate that activation of PAR4 results in the formation of actin fiber distinct from that by PAR1 activation, suggesting PAR4 may play specific roles in the lung endothelial cells.


2010 ◽  
Vol 52 (5-6) ◽  
pp. 175-181 ◽  
Author(s):  
John D. Catravas ◽  
Connie Snead ◽  
Christiana Dimitropoulou ◽  
Albert S.Y. Chang ◽  
Rudolf Lucas ◽  
...  

2013 ◽  
Vol 9 (7) ◽  
pp. 875-884 ◽  
Author(s):  
Fernando Terán Arce ◽  
Brian Meckes ◽  
Sara M. Camp ◽  
Joe G.N. Garcia ◽  
Steven M. Dudek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document