scholarly journals Activation of PAR4 Induces a Distinct Actin Fiber Formation via p38 MAPK in Human Lung Endothelial Cells

2005 ◽  
Vol 53 (9) ◽  
pp. 1121-1129 ◽  
Author(s):  
Masakazu Fujiwara ◽  
Enjing Jin ◽  
Mohammad Ghazizadeh ◽  
Oichi Kawanami

Protease-activated receptors (PARs) are multifunctional G protein–coupled receptors. Among the four existing PARs, PAR4 is preferentially expressed in the human lung tissue. However, the function of PAR4 has not been defined in the lung endothelial cells. Because PAR1-mediated cellular effects are deeply related to the morphological changes, we focused on the actin fiber and p38 mitogen-activated protein kinase (MAPK) signaling involved in actin polymerization to elucidate the role of PAR4. RT-PCR and Western blot analyses identified PAR4 expression in human pulmonary artery endothelial cells and in human microvascular endothelial cells from lung. We then examined the changes in actin fibers in endothelial cells treated with PAR4-activating peptide. PAR1-activating peptide was used for comparison. Activation of PAR4 and PAR1 by their corresponding peptides induced actin fiber formation; however, the actin filaments were broadly bundled in PAR4 as compared with the ringlike actin filaments in PAR1 activation. Correspondingly, the magnitude of p38 MAPK phosphorylation was different between cells treated with PAR4 and PAR1, with PAR4-activating peptide showing a significantly higher sensitivity to p38 MAPK inhibitor, SB203580. Taken together, these results demonstrate that activation of PAR4 results in the formation of actin fiber distinct from that by PAR1 activation, suggesting PAR4 may play specific roles in the lung endothelial cells.

2014 ◽  
Vol 522-524 ◽  
pp. 332-336 ◽  
Author(s):  
Kai Xiu Qin ◽  
Yong Wang ◽  
Hua Gang Jian

Objective To investigate the expression and roles of p38 mitogen-activated protein kinase (p38 MAPK) in LPS-induced acute lung injury (ALI) in mice. Methods The ALI mice models were set up by intraperineal injection of lipopolysaccharide (LPS). The expressions of p38 MAPK in lung tissues were detected by immunohistochemistry and Western-blot. Results The positive expressions of p38 MAPK distribute mainly in infiltrative inflammatory cells, epithelial cells and endothelial cells. And the level of expression of phosphated p38 MAPK in ALI group were higher obviously than that in the control group, and it reached a peak after two hours. Conclusion p38 MAPK signaling pathway was triggered by ALI induced by endotoxin.


2003 ◽  
Vol 284 (1) ◽  
pp. L26-L38 ◽  
Author(s):  
Narasimham L. Parinandi ◽  
Michael A. Kleinberg ◽  
Peter V. Usatyuk ◽  
Rhett J. Cummings ◽  
Arjun Pennathur ◽  
...  

Hyperoxia increases reactive oxygen species (ROS) production in vascular endothelium; however, the mechanisms involved in ROS generation are not well characterized. We determined the role and regulation of NAD(P)H oxidase in hyperoxia-induced ROS formation in human pulmonary artery endothelial cells (HPAECs). Exposure of HPAECs to hyperoxia for 1, 3, and 12 h increased the generation of superoxide anion, which was blocked by diphenyleneiodonium but not by rotenone or oxypurinol. Furthermore, hyperoxia enhanced NADPH- and NADH-dependent and superoxide dismutase- or diphenyleneiodonium-inhibitable ROS production in HPAECs. Immunohistocytochemistry and Western blotting revealed the presence of gp91, p67 phox, p22 phox, and p47 phox subcomponents of NADPH oxidase in HPAECs. Transfection of HPAECs with p22 phox antisense plasmid inhibited hyperoxia-induced ROS production. Exposure of HPAECs to hyperoxia activated p38 MAPK and ERK, and inhibition of p38 MAPK and MEK1/2 attenuated the hyperoxia-induced ROS generation. These results suggest a role for MAPK in regulating hyperoxia-induced NAD(P)H oxidase activation in HPAECs.


2013 ◽  
Vol 288 (23) ◽  
pp. 17030-17041 ◽  
Author(s):  
Premanand C. Sundivakkam ◽  
Viswanathan Natarajan ◽  
Asrar B. Malik ◽  
Chinnaswamy Tiruppathi

The Ca2+ sensor STIM1 is crucial for activation of store-operated Ca2+ entry (SOCE) through transient receptor potential canonical and Orai channels. STIM1 phosphorylation serves as an “off switch” for SOCE. However, the signaling pathway for STIM1 phosphorylation is unknown. Here, we show that SOCE activates AMP-activated protein kinase (AMPK); its effector p38β mitogen-activated protein kinase (p38β MAPK) phosphorylates STIM1, thus inhibiting SOCE in human lung microvascular endothelial cells. Activation of AMPK using 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) resulted in STIM1 phosphorylation on serine residues and prevented protease-activated receptor-1 (PAR-1)-induced Ca2+ entry. Furthermore, AICAR pretreatment blocked PAR-1-induced increase in the permeability of mouse lung microvessels. Activation of SOCE with thrombin caused phosphorylation of isoform α1 but not α2 of the AMPK catalytic subunit. Moreover, knockdown of AMPKα1 augmented SOCE induced by thrombin. Interestingly, SB203580, a selective inhibitor of p38 MAPK, blocked STIM1 phosphorylation and led to sustained STIM1-puncta formation and Ca2+ entry. Of the three p38 MAPK isoforms expressed in endothelial cells, p38β knockdown prevented PAR-1-mediated STIM1 phosphorylation and potentiated SOCE. In addition, inhibition of the SOCE downstream target CaM kinase kinase β (CaMKKβ) or knockdown of AMPKα1 suppressed PAR-1-mediated phosphorylation of p38β and hence STIM1. Thus, our findings demonstrate that SOCE activates CaMKKβ-AMPKα1-p38β MAPK signaling to phosphorylate STIM1, thereby suppressing endothelial SOCE and permeability responses.


2006 ◽  
Vol 17 (4) ◽  
pp. 1985-1994 ◽  
Author(s):  
Elena Toschi ◽  
Ilaria Bacigalupo ◽  
Raffaele Strippoli ◽  
Chiara Chiozzini ◽  
Anna Cereseto ◽  
...  

Tat, the transactivator of HIV-1 gene expression, is released by acutely HIV-1-infected T-cells and promotes adhesion, migration, and growth of inflammatory cytokine-activated endothelial and Kaposi's sarcoma cells. It has been previously demonstrated that these effects of Tat are due to its ability to bind through its arginine-glycine-aspartic (RGD) region to the α5β1 and αvβ3 integrins. However, the signaling pathways linking Tat to the regulation of cellular functions are incompletely understood. Here, we report that Tat ligation on human endothelial cells results in the activation of the small GTPases Ras and Rac and the mitogen-activated protein kinase ERK, specifically through its RGD region. In addition, we demonstrated that Tat activation of Ras, but not of Rac, induces ERK phosphorylation. We also found that the receptor proximal events accompanying Tat-induced Ras activation are mediated by tyrosine phosphorylation of Shc and recruitment of Grb2. Moreover, Tat enabled endothelial cells to progress through the G1 phase in response to bFGF, and the process is linked to ERK activation. Taken together, these data provide novel evidence about the ability of Tat to activate the Ras-ERK cascade which may be relevant for endothelial cell proliferation and for Kaposi's sarcoma progression.


2011 ◽  
Vol 300 (1) ◽  
pp. E103-E110 ◽  
Author(s):  
Xiaoban Xin ◽  
Lijun Zhou ◽  
Caleb M. Reyes ◽  
Feng Liu ◽  
Lily Q. Dong

The adaptor protein APPL1 mediates the stimulatory effect of adiponectin on p38 mitogen-activated protein kinase (MAPK) signaling, yet the underlying mechanism remains unclear. Here we show that, in C2C12 cells, overexpression or suppression of APPL1 enhanced or suppressed, respectively, adiponectin-stimulated p38 MAPK upstream kinase cascade, consisting of transforming growth factor-β-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase 3 (MKK3). In vitro affinity binding and coimmunoprecipitation experiments revealed that TAK1 and MKK3 bind to different regions of APPL1, suggesting that APPL1 functions as a scaffolding protein to facilitate adiponectin-stimulated p38 MAPK activation. Interestingly, suppressing APPL1 had no effect on TNFα-stimulated p38 MAPK phosphorylation in C2C12 myotubes, indicating that the stimulatory effect of APPL1 on p38 MAPK activation is selective. Taken together, our study demonstrated that the TAK1-MKK3 cascade mediates adiponectin signaling and uncovers a scaffolding role of APPL1 in regulating the TAK1-MKK3-p38 MAPK pathway, specifically in response to adiponectin stimulation.


Author(s):  
Jonas C. Schupp ◽  
Taylor S. Adams ◽  
Carlos Cosme Jr. ◽  
Micha Sam Brickman Raredon ◽  
Yifan Yuan ◽  
...  

Background: The cellular diversity of the lung endothelium has not been systematically characterized in humans. Here, we provide a reference atlas of human lung endothelial cells (ECs) to facilitate a better understanding of the phenotypic diversity and composition of cells comprising the lung endothelium. Methods: We reprocessed human control single cell RNA sequencing (scRNAseq) data from six datasets. EC populations were characterized through iterative clustering with subsequent differential expression analysis. Marker genes were validated by fluorescent microscopy and in situ hybridization. scRNAseq of primary lung ECs cultured in-vitro was performed. The signaling network between different lung cell types was studied. For cross species analysis or disease relevance, we applied the same methods to scRNAseq data obtained from mouse lungs or from human lungs with pulmonary hypertension. Results: Six lung scRNAseq datasets were reanalyzed and annotated to identify over 15,000 vascular EC cells from 73 individuals. Differential expression analysis of EC revealed signatures corresponding to endothelial lineage, including pan-endothelial, pan-vascular and subpopulation-specific marker gene sets. Beyond the broad cellular categories of lymphatic, capillary, arterial and venous ECs, we found previously indistinguishable subpopulations: among venous EC, we identified two previously indistinguishable populations, pulmonary-venous ECs (COL15A1neg) localized to the lung parenchyma and systemic-venous ECs (COL15A1pos) localized to the airways and the visceral pleura; among capillary EC, we confirmed their subclassification into recently discovered aerocytes characterized by EDNRB, SOSTDC1 and TBX2 and general capillary EC. We confirmed that all six endothelial cell types, including the systemic-venous EC and aerocytes, are present in mice and identified endothelial marker genes conserved in humans and mice. Ligand-receptor connectome analysis revealed important homeostatic crosstalk of EC with other lung resident cell types. scRNAseq of commercially available primary lung ECs demonstrated a loss of their native lung phenotype in culture. scRNAseq revealed that the endothelial diversity is maintained in pulmonary hypertension. Our manuscript is accompanied by an online data mining tool (www.LungEndothelialCellAtlas.com). Conclusions: Our integrated analysis provides the comprehensive and well-crafted reference atlas of lung endothelial cells in the normal lung and confirms and describes in detail previously unrecognized endothelial populations across a large number of humans and mice.


2019 ◽  
Vol 12 ◽  
pp. 117863611986459 ◽  
Author(s):  
Jessica Gräb ◽  
Jan Rybniker

The p38 mitogen-activated protein kinase (MAPK) is involved in a multitude of essential cellular processes. The kinase is activated in response to environmental stresses, including bacterial infections and inflammation, to regulate the immune response of the host. However, recent studies have demonstrated that pathogens can manipulate p38 MAPK signaling for their own benefit to either prevent or induce host cell apoptosis. In addition, there is evidence demonstrating that p38 MAPK is a potent trigger of pathogen-induced necrosis driven by mitochondrial membrane disruption. Given the large number of p38 MAPK inhibitors that have been tested in clinical trials, these findings provide an opportunity to repurpose these drugs for improved control of infectious diseases.


2005 ◽  
Vol 288 (3) ◽  
pp. C659-C668 ◽  
Author(s):  
Pamela J. Boyd ◽  
Jennifer Doyle ◽  
Eric Gee ◽  
Shelley Pallan ◽  
Tara L. Haas

Microvascular endothelial cells embedded within three-dimensional (3D) type I collagen matrixes assemble into cellular networks, a process that requires the upregulation of membrane type 1 (MT1) matrix metalloproteinase (MMP) and MMP-2. The purpose of this study was to identify the signaling pathways responsible for the transcriptional activation of MT1-MMP and MMP-2 in endothelial cells in 3D collagen lattices. We hypothesized that the 3D type I collagen induction of MT1-MMP and MMP-2 is mediated by the mitogen-activated protein kinase family of enzymes. Here, we show that 3D type I collagen elicits a persistent increase in ERK1/2 and JNK activation and a decrease in p38 activation. Inhibition of ERK1/2 or JNK disrupted endothelial network formation in 3D type I collagen lattices, whereas inhibition of p38 promoted network formation. mRNA levels of both MT1-MMP and MMP-2 were attenuated by ERK1/2 inhibition but unaffected by either JNK or p38 inhibition. By contrast, expression of constitutively active MEK was sufficient to stimulate MMP-2 production in a monolayer of endothelial cells cultured on type I collagen. These results provide evidence that signaling through both ERK1/2 and JNK regulates endothelial assembly into cellular networks but that the ERK1/2 signaling cascade specifically regulates network formation and the production of both MT1-MMP and MMP-2 genes in response to 3D type I collagen.


Sign in / Sign up

Export Citation Format

Share Document