Effects of Marijuana Smoke Exposure and LABA/GCS Intervention on the Transcriptome and Pro-Inflammatory Cytokine Production of Airway Epithelial Cells In Vitro

Author(s):  
R.D. Huff ◽  
J.A. Aguiar ◽  
J. Page ◽  
A.C. Doxey ◽  
J.A. Hirota
2020 ◽  
pp. 00705-2020
Author(s):  
Abiram Chandiramohan ◽  
Mohammedhossein Dabaghi ◽  
Jennifer A. Aguiar ◽  
Nicholas Tiessen ◽  
Mary Stewart ◽  
...  

Accessible in vitro models recapitulating the human airway that are amenable to study whole cannabis smoke exposure are needed for immunological and toxicological studies that inform public health policy and recreational cannabis use. In the present study, we developed and validated a novel 3D printed In Vitro Exposure System (IVES) that can be directly applied to study the effect of cannabis smoke exposure on primary human bronchial epithelial cells.Using commercially available design software and a 3D printer, we designed a four-chamber Transwell® insert holder for exposures to whole smoke. COMSOL® Multiphysics software was used to model gas distribution, concentration gradients, velocity profile and shear stress within IVES. Following simulations, primary human bronchial epithelial cells cultured at air-liquid interface on Transwell® inserts were exposed to whole cannabis smoke using a modified version of the Foltin Puff procedure. Following 24 h, outcome measurements included cell morphology, epithelial barrier function, lactate dehydrogenase (LDH) levels, cytokine and gene expression.Whole smoke delivered through IVES possesses velocity profiles consistent with uniform gas distribution across the four chambers and complete mixing. Airflow velocity ranged between 1.0–1.5 µm s−1 and generated low shear stresses (≪ 1 Pa). Human airway epithelial cells exposed to cannabis smoke using IVES showed changes in cell morphology and disruption of barrier function without significant cytotoxicity. Cannabis smoke elevated IL-1 family cytokines and elevated CYP1A1 and CYP1B1 expression relative to control, validating IVES smoke exposure impacts in human airway epithelial cells at a molecular level.The growing legalisation of cannabis on a global scale must be paired with research related to potential health impacts of lung exposures. IVES represents an accessible, open-source, exposure system that can be used to model varying types of cannabis smoke exposures with human airway epithelial cells grown under air-liquid interface culture conditions.


1998 ◽  
Vol 42 (6) ◽  
pp. 1499-1502 ◽  
Author(s):  
Shin Kawasaki ◽  
Hajime Takizawa ◽  
Takayuki Ohtoshi ◽  
Naonobu Takeuchi ◽  
Tadashi Kohyama ◽  
...  

ABSTRACT We evaluated the effect of roxithromycin on cytokine production and neutrophil attachment to human airway epithelial cells. Roxithromycin suppressed production of interleukin 8 (IL-8), IL-6, and granulocyte-macrophage colony-stimulating factor. It inhibited neutrophil adhesion to epithelial cells. Roxithromycin modulates local recruitment and activation of inflammatory cells, which may have relevance to its efficacy in airway diseases.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 509 ◽  
Author(s):  
Meenakshi Tiwary ◽  
Robert J. Rooney ◽  
Swantje Liedmann ◽  
Kim S. LeMessurier ◽  
Amali E. Samarasinghe

Eosinophils, previously considered terminally differentiated effector cells, have multifaceted functions in tissues. We previously found that allergic mice with eosinophil-rich inflammation were protected from severe influenza and discovered specialized antiviral effector functions for eosinophils including promoting cellular immunity during influenza. In this study, we hypothesized that eosinophil responses during the early phase of influenza contribute to host protection. Using in vitro and in vivo models, we found that eosinophils were rapidly and dynamically regulated upon influenza A virus (IAV) exposure to gain migratory capabilities to traffic to lymphoid organs after pulmonary infection. Eosinophils were capable of neutralizing virus upon contact and combinations of eosinophil granule proteins reduced virus infectivity through hemagglutinin inactivation. Bi-directional crosstalk between IAV-exposed epithelial cells and eosinophils occurred after IAV infection and cross-regulation promoted barrier responses to improve antiviral defenses in airway epithelial cells. Direct interactions between eosinophils and airway epithelial cells after IAV infection prevented virus-induced cytopathology in airway epithelial cells in vitro, and eosinophil recipient IAV-infected mice also maintained normal airway epithelial cell morphology. Our data suggest that eosinophils are important in the early phase of IAV infection providing immediate protection to the epithelial barrier until adaptive immune responses are deployed during influenza.


Life Sciences ◽  
2015 ◽  
Vol 141 ◽  
pp. 128-136 ◽  
Author(s):  
Stefan Muenster ◽  
Christian Bode ◽  
Britta Diedrich ◽  
Sebastian Jahnert ◽  
Christina Weisheit ◽  
...  

2018 ◽  
Vol 112 ◽  
pp. 163-168 ◽  
Author(s):  
Cynthia M. Schwartz ◽  
Braedyn A. Dorn ◽  
Selam Habtemariam ◽  
Cynthia L. Hill ◽  
Tendy Chiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document