Supervised Machine Learning Identifies Novel Risk Stratification Categories for Patients Undergoing Anatomic Lung Resection

Author(s):  
C.W. Towe ◽  
A. Khil ◽  
S. Navale ◽  
Y. Perry ◽  
K. Wu ◽  
...  
2019 ◽  
Vol 73 (9) ◽  
pp. 1441
Author(s):  
Marco Piccirilli ◽  
Marton Tokodi ◽  
Lan Hu ◽  
Muhammad Ashraf ◽  
Grace Casalang-Verzosa ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Yan Gao ◽  
Xueke Bai ◽  
Jiapeng Lu ◽  
Lihua Zhang ◽  
Xiaofang Yan ◽  
...  

Background: Heart failure with preserved ejection fraction (HFpEF) is increasingly recognized as a major global public health burden and lacks effective risk stratification. We aimed to assess a multi-biomarker model in improving risk prediction in HFpEF.Methods: We analyzed 18 biomarkers from the main pathophysiological domains of HF in 380 patients hospitalized for HFpEF from a prospective cohort. The association between these biomarkers and 2-year risk of all-cause death was assessed by Cox proportional hazards model. Support vector machine (SVM), a supervised machine learning method, was used to develop a prediction model of 2-year all-cause and cardiovascular death using a combination of 18 biomarkers and clinical indicators. The improvement of this model was evaluated by c-statistics, net reclassification improvement (NRI), and integrated discrimination improvement (IDI).Results: The median age of patients was 71-years, and 50.5% were female. Multiple biomarkers independently predicted the 2-year risk of death in Cox regression model, including N-terminal pro B-type brain-type natriuretic peptide (NT-proBNP), high-sensitivity cardiac troponin T (hs-TnT), growth differentiation factor-15 (GDF-15), tumor necrosis factor-α (TNFα), endoglin, and 3 biomarkers of extracellular matrix turnover [tissue inhibitor of metalloproteinases (TIMP)-1, matrix metalloproteinase (MMP)-2, and MMP-9) (FDR < 0.05). The SVM model effectively predicted the 2-year risk of all-cause death in patients with acute HFpEF in training set (AUC 0.834, 95% CI: 0.771–0.895) and validation set (AUC 0.798, 95% CI: 0.719–0.877). The NRI and IDI indicated that the SVM model significantly improved patient classification compared to the reference model in both sets (p < 0.05).Conclusions: Multiple circulating biomarkers coupled with an appropriate machine-learning method could effectively predict the risk of long-term mortality in patients with acute HFpEF. It is a promising strategy for improving risk stratification in HFpEF.


2020 ◽  
Vol 14 (2) ◽  
pp. 140-159
Author(s):  
Anthony-Paul Cooper ◽  
Emmanuel Awuni Kolog ◽  
Erkki Sutinen

This article builds on previous research around the exploration of the content of church-related tweets. It does so by exploring whether the qualitative thematic coding of such tweets can, in part, be automated by the use of machine learning. It compares three supervised machine learning algorithms to understand how useful each algorithm is at a classification task, based on a dataset of human-coded church-related tweets. The study finds that one such algorithm, Naïve-Bayes, performs better than the other algorithms considered, returning Precision, Recall and F-measure values which each exceed an acceptable threshold of 70%. This has far-reaching consequences at a time where the high volume of social media data, in this case, Twitter data, means that the resource-intensity of manual coding approaches can act as a barrier to understanding how the online community interacts with, and talks about, church. The findings presented in this article offer a way forward for scholars of digital theology to better understand the content of online church discourse.


2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


2020 ◽  
Vol 28 (2) ◽  
pp. 253-265 ◽  
Author(s):  
Gabriela Bitencourt-Ferreira ◽  
Amauri Duarte da Silva ◽  
Walter Filgueira de Azevedo

Background: The elucidation of the structure of cyclin-dependent kinase 2 (CDK2) made it possible to develop targeted scoring functions for virtual screening aimed to identify new inhibitors for this enzyme. CDK2 is a protein target for the development of drugs intended to modulate cellcycle progression and control. Such drugs have potential anticancer activities. Objective: Our goal here is to review recent applications of machine learning methods to predict ligand- binding affinity for protein targets. To assess the predictive performance of classical scoring functions and targeted scoring functions, we focused our analysis on CDK2 structures. Methods: We have experimental structural data for hundreds of binary complexes of CDK2 with different ligands, many of them with inhibition constant information. We investigate here computational methods to calculate the binding affinity of CDK2 through classical scoring functions and machine- learning models. Results: Analysis of the predictive performance of classical scoring functions available in docking programs such as Molegro Virtual Docker, AutoDock4, and Autodock Vina indicated that these methods failed to predict binding affinity with significant correlation with experimental data. Targeted scoring functions developed through supervised machine learning techniques showed a significant correlation with experimental data. Conclusion: Here, we described the application of supervised machine learning techniques to generate a scoring function to predict binding affinity. Machine learning models showed superior predictive performance when compared with classical scoring functions. Analysis of the computational models obtained through machine learning could capture essential structural features responsible for binding affinity against CDK2.


Sign in / Sign up

Export Citation Format

Share Document