Single Cell RNA Sequencing Identifies an Acute Respiratory Distress Syndrome Monocyte Response

Author(s):  
B.R. Rosborough ◽  
Y. Jiang ◽  
S. Rapport ◽  
B.J. McVerry ◽  
W. Chen ◽  
...  
2020 ◽  
Vol 21 (17) ◽  
pp. 6244
Author(s):  
Amira Mohammed ◽  
Hasan F.K. Alghetaa ◽  
Kathryn Miranda ◽  
Kiesha Wilson ◽  
Narendra P. Singh ◽  
...  

Acute Respiratory Distress Syndrome (ARDS) causes up to 40% mortality in humans and is difficult to treat. ARDS is also one of the major triggers of mortality associated with coronavirus-induced disease (COVID-19). We used a mouse model of ARDS induced by Staphylococcal enterotoxin B (SEB), which triggers 100% mortality, to investigate the mechanisms through which Δ9-tetrahydrocannabinol (THC) attenuates ARDS. SEB was used to trigger ARDS in C3H mice. These mice were treated with THC and analyzed for survival, ARDS, cytokine storm, and metabolome. Additionally, cells isolated from the lungs were used to perform single-cell RNA sequencing and transcriptome analysis. A database analysis of human COVID-19 patients was also performed to compare the signaling pathways with SEB-mediated ARDS. The treatment of SEB-mediated ARDS mice with THC led to a 100% survival, decreased lung inflammation, and the suppression of cytokine storm. This was associated with immune cell apoptosis involving the mitochondrial pathway, as suggested by single-cell RNA sequencing. A transcriptomic analysis of immune cells from the lungs revealed an increase in mitochondrial respiratory chain enzymes following THC treatment. In addition, metabolomic analysis revealed elevated serum concentrations of amino acids, lysine, n-acetyl methionine, carnitine, and propionyl L-carnitine in THC-treated mice. THC caused the downregulation of miR-185, which correlated with an increase in the pro-apoptotic gene targets. Interestingly, the gene expression datasets from the bronchoalveolar lavage fluid (BALF) of human COVID-19 patients showed some similarities between cytokine and apoptotic genes with SEB-induced ARDS. Collectively, this study suggests that the activation of cannabinoid receptors may serve as a therapeutic modality to treat ARDS associated with COVID-19.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Qi-Quan Wan ◽  
Di Wu ◽  
Qi-Fa Ye

Up until now, the regulation mechanism at the level of gene during lipopolysaccharide- (LPS-) induced acute respiratory distress syndrome (ARDS) remains unclear. The discovery of differentially expressed genes (DEGs) between LPS-induced ARDS rats and normal rats by next-generation RNA sequencing analysis is of particular interest for the current study. These DEGs may help clinical diagnosis of ARDS and facilitate the selection of the optimal treatment strategy. Randomly, 20 rats were equally divided into 2 groups, the control group and the LPS group. Three rats from each group were selected at random for RNA sequencing analysis. Sequence reads were obtained from Illumina HiSeq4000 and mapped onto the rat reference genome RN6 using Hisat2. We identified 5244 DEGs (Fold_Change > 1.5, and P<0.05) in the lung tissues from LPS-treated rats compared with normal rats, including 1413 upregulated and 3831 downregulated expressed genes. Lots of chemokine family members were among the most upregulated genes in LPS group. Gene ontology (GO) analysis revealed that almost all of the most enriched and meaningful biological process terms were mainly involved in the functions like immune-inflammation response and the pathways like cytokine-cytokine receptor interaction. We also found that, as for GO molecular function terms, the enriched terms were mainly related to chemokines and cytokines. DEGs with fold change over 100 were verified by quantitative real-time polymerase chain reaction and reanalyzed by gene-gene coexpression network, and the results elucidated central roles of chemokines in LPS-induced ARDS. Our results revealed some new biomarkers for uncovering mechanisms and processes of ARDS.


2020 ◽  
Vol 49 (10) ◽  
pp. 418-421
Author(s):  
Christopher Werlein ◽  
Peter Braubach ◽  
Vincent Schmidt ◽  
Nicolas J. Dickgreber ◽  
Bruno Märkl ◽  
...  

ZUSAMMENFASSUNGDie aktuelle COVID-19-Pandemie verzeichnet mittlerweile über 18 Millionen Erkrankte und 680 000 Todesfälle weltweit. Für die hohe Variabilität sowohl der Schweregrade des klinischen Verlaufs als auch der Organmanifestationen fanden sich zunächst keine pathophysiologisch zufriedenstellenden Erklärungen. Bei schweren Krankheitsverläufen steht in der Regel eine pulmonale Symptomatik im Vordergrund, meist unter dem Bild eines „acute respiratory distress syndrome“ (ARDS). Darüber hinaus zeigen sich jedoch in unterschiedlicher Häufigkeit Organmanifestationen in Haut, Herz, Nieren, Gehirn und anderen viszeralen Organen, die v. a. durch eine Perfusionsstörung durch direkte oder indirekte Gefäßwandschädigung zu erklären sind. Daher wird COVID-19 als vaskuläre Multisystemerkrankung aufgefasst. Vor dem Hintergrund der multiplen Organmanifestationen sind klinisch-pathologische Obduktionen eine wichtige Grundlage der Entschlüsselung der Pathomechanismen von COVID-19 und auch ein Instrument zur Generierung und Hinterfragung innovativer Therapieansätze.


Sign in / Sign up

Export Citation Format

Share Document