scholarly journals MitoQ Prevents Mitochondrial-Induced Apoptosis of Pulmonary Microvascular Endothelial Cell in ALI Through NRF2-ARE Pathway

Author(s):  
F. Xu ◽  
M. Ceng ◽  
W. Ouyang
2001 ◽  
Vol 81 (12) ◽  
pp. 1717-1727 ◽  
Author(s):  
Vera Krump-Konvalinkova ◽  
Fernando Bittinger ◽  
Ronald E Unger ◽  
Kirsten Peters ◽  
Hans-Anton Lehr ◽  
...  

Author(s):  
Junxia Li ◽  
Yiming Xia ◽  
Zhizhong Huang ◽  
Yan Zhao ◽  
Renping Xiong ◽  
...  

Hypoxia-induced pulmonary microvascular endothelial cell (PMVEC) monolayers hyperpermeability is vital for vascular leakage, which participates in vascular diseases, such as acute lung injury (ALI) and high altitude pulmonary edema (HAPE). We previously observed PMVEC permeability was markedly elevated in hypoxia when cocultured with primary type II alveolar epithelial cells (AECII) in which isthmin1(ISM1) was highly upregulated. However, whether the upregulation of ISM1 plays a role in hypoxia-induced PMVEC hyperpermeability is unclear. In this study, we assessed the role of AECII-derived ISM1 in hypoxia-induced PMVEC hyperpermeability with an AECII/PMVEC co-culture system and uncovered the underlying mechanism whereby hypoxia stimulates ISM1 gene expression. We found that ISM1 gene expression was upregulated in cultured AECII cells exposed to hypoxia (3% O2), and that AECII-derived ISM1 participated in hypoxia-induced hyperpermeability of PMVEC monolayers since siRNA-mediated knockdown of ISM1 in AECII markedly attenuated the increasement of PMVEC permeability in co-culture system under hypoxia. Additionally, we confirmed that ISM1 was regulated by hypoxia-inducible factor-1α (HIF1α) according to the evidence that silencing of HIF1α inhibited the hypoxia-mediated upregulation of ISM1. Mechanismly, overexpression of HIF1α transcriptionally activated ISM1 gene expression by directly binding to the conserved regulatory elements upstream of the ism1 locus. We identified a novel HIF-1-target gene ISM1, which involves in hyperpermeability of pulmonary microvascular endothelial cell monolayers under hypoxia. Our in vitro cell experiments implied that the upregulated ISM1 derived from alveolar epithelium might be a vital modulator in hypoxia-induced endothelial hyperpermeability and thereby implicates with hypoxic pulmonary-related diseases.


Sign in / Sign up

Export Citation Format

Share Document