Phylogeny and higher classification of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea)*

Zootaxa ◽  
2007 ◽  
Vol 1668 (1) ◽  
pp. 413-425 ◽  
Author(s):  
P. J. GULLAN ◽  
L. G. COOK

The superfamily Coccoidea contains nearly 8000 species of plant-feeding hemipterans comprising up to 32 families divided traditionally into two informal groups, the archaeococcoids and the neococcoids. The neococcoids form a monophyletic group supported by both morphological and genetic data. In contrast, the monophyly of the archaeococcoids is uncertain and the higher level ranks within it have been controversial, particularly since the late Professor Jan Koteja introduced his multi-family classification for scale insects in 1974. Recent phylogenetic studies using molecular and morphological data support the recognition of up to 15 extant families of archaeococcoids, including 11 families for the former Margarodidae sensu lato, vindicating Koteja’s views. Archaeococcoids are represented better in the fossil record than neococcoids, and have an adequate record through the Tertiary and Cretaceous but almost no putative coccoid fossils are known from earlier. In contrast, the sister group of the scale insects (Aphidoidea) has a more informative Jurassic and Triassic record. Relationships among most scale insect families are unresolved in phylogenetic trees based on nuclear DNA sequences, and most nodes in trees based on morphological data, including those from adult males, are poorly supported. Within the neococcoids, the Eriococcidae is not monophyletic and the monophyly of the Coccidae and Diaspididae may be compromised by the current family-level recognition of a few species-poor autapomorphic groups.

Zootaxa ◽  
2009 ◽  
Vol 2294 (1) ◽  
pp. 1-22 ◽  
Author(s):  
RAINER SONNENBERG ◽  
ECKHARD BUSCH

The phylogeny of the West African genus Archiaphyosemion was studied with mitochondrial and nuclear DNA sequences. The results of the combined dataset presented here did not support a monophyletic group. After the exclusion of the type species of the genus, A. guineense, the remaining species form a well-supported monophyletic group. Based on these molecular results and supported by morphological data, we suggest a new name for this group, Nimbapanchax, new genus. Additionally, based on a recent collection in Guinea, two new Nimbapanchax species were described. The taxon Nimbapanchax leucopterygius, new species, is described for a nothobranchiid fish formerly misidentified as Archiaphyosemion maeseni (Poll, 1941). Nimbapanchax melanopterygius, new species, is described from the Mount Nimba region in southeastern Guinea. Both new Nimbapanchax species are clearly distinguished from their congeners by the coloration pattern of adult males. The results of the DNA data support the assumption based on color pattern and morphological characters that the new described species are sister taxa. The type of Aphyosemion maeseni Poll, 1941 was reexamined and transferred to the genus Epiplatys, a decision based on diagnostic morphological characters.


Author(s):  
Kathryn A. Hall ◽  
Pat A. Hutchings ◽  
Donald J. Colgan

The integration of molecular and morphological approaches has produced substantial progress in understanding the higher classification of most major invertebrate groups. The striking exception to this is the Polychaeta. Neither the membership nor the higher classification of this group has been robustly established. Major inconsistencies exist between the only comprehensive cladistic analysis of Polychaeta using morphological data and the DNA sequence studies covering all or part of the taxon.We have compiled a dataset of available nearly complete 18S ribosomal DNA sequences and collected an additional 22 sequences (20 Polychaeta in 19 taxa, one Myzostomida and one Phoronida) to obtain more comprehensive coverage of polychaete diversity for this gene. Analyses of the data do not resolve all inconsistencies among current hypotheses of polychaete phylogeny. They do support the recognition (in whole or part) of some clades such as the Eunicida, Phyllodocida and Terebellida that have been proposed on morphological grounds. Our analyses contradict the Canalipalpata and the Scolecida. Although the polychaete sister-group to the Clitellata is not clearly resolved in our analyses, the clitellates are always recovered as a derived clade within the Polychaeta. Increased taxon sampling is required to elucidate further the phylogeny of the Polychaeta.


IMA Fungus ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Agata Kaczmarek ◽  
Mieczysława I. Boguś

AbstractThe relationship between entomopathogenic fungi and their insect hosts is a classic example of the co-evolutionary arms race between pathogen and target host. The present review describes the entomopathogenic potential of Chytridiomycota and Blastocladiomycota fungi, and two groups of fungal allies: Oomycota and Microsporidia. The Oomycota (water moulds) are considered as a model biological control agent of mosquito larvae. Due to their shared ecological and morphological similarities, they had long been considered a part of the fungal kingdom; however, phylogenetic studies have since placed this group within the Straminipila. The Microsporidia are parasites of economically-important insects, including grasshoppers, lady beetles, bumblebees, colorado potato beetles and honeybees. They have been found to display some fungal characteristics, and phylogenetic studies suggest that they are related to fungi, either as a basal branch or sister group. The Blastocladiomycota and Chytridiomycota, named the lower fungi, historically were described together; however, molecular phylogenetic and ultrastructural research has classified them in their own phylum. They are considered parasites of ants, and of the larval stages of black flies, mosquitoes and scale insects.


2012 ◽  
Vol 279 (1737) ◽  
pp. 2396-2401 ◽  
Author(s):  
Rachunliu G. Kamei ◽  
Diego San Mauro ◽  
David J. Gower ◽  
Ines Van Bocxlaer ◽  
Emma Sherratt ◽  
...  

The limbless, primarily soil-dwelling and tropical caecilian amphibians (Gymnophiona) comprise the least known order of tetrapods. On the basis of unprecedented extensive fieldwork, we report the discovery of a previously overlooked, ancient lineage and radiation of caecilians from threatened habitats in the underexplored states of northeast India. Molecular phylogenetic analyses of mitogenomic and nuclear DNA sequences, and comparative cranial anatomy indicate an unexpected sister-group relationship with the exclusively African family Herpelidae. Relaxed molecular clock analyses indicate that these lineages diverged in the Early Cretaceous, about 140 Ma. The discovery adds a major branch to the amphibian tree of life and sheds light on both the evolution and biogeography of caecilians and the biotic history of northeast India—an area generally interpreted as a gateway between biodiversity hotspots rather than a distinct biogeographic unit with its own ancient endemics. Because of its distinctive morphology, inferred age and phylogenetic relationships, we recognize the newly discovered caecilian radiation as a new family of modern amphibians.


2015 ◽  
Vol 46 (3) ◽  
pp. 269-290 ◽  
Author(s):  
Ian J. Kitching ◽  
C. Lorna Culverwell ◽  
Ralph E. Harbach

Lutzia Theobald was reduced to a subgenus of Culex in 1932 and was treated as such until it was restored to its original generic status in 2003, based mainly on modifications of the larvae for predation. Previous phylogenetic studies based on morphological and molecular data have provided conflicting support for the generic status of Lutzia: analyses of morphological data support the generic status whereas analyses based on DNA sequences do not. Our previous phylogenetic analyses of Culicini (based on 169 morphological characters and 86 species representing the four genera and 26 subgenera of Culicini, most informal group taxa of subgenus Culex and five outgroup species from other tribes) seemed to indicate a conflict between adult and larval morphological data. Hence, we conducted a series of comparative and data exclusion analyses to determine whether the alternative positions of Lutzia are due to conflicting signal or to a lack of strong signal. We found that separate and combined analyses of adult and larval data support different patterns of relationships between Lutzia and other Culicini. However, the majority of conflicting clades are poorly supported and once these are removed from consideration, most of the topological disparity disappears, along with much of the resolution, suggesting that morphology alone does not have sufficiently strong signal to resolve the position of Lutzia. We critically examine the results of other phylogenetic studies of culicinine relationships and conclude that no morphological or molecular data set analysed in any study conducted to date has adequate signal to place Lutzia unequivocally with regard to other taxa in Culicini. Phylogenetic relationships observed thus far suggest that Lutzia is placed within Culex but further data and extended taxon sampling are required to confirm its position relative to Culex.


Zootaxa ◽  
2017 ◽  
Vol 4320 (3) ◽  
pp. 571 ◽  
Author(s):  
YEN-PO LIN ◽  
HIROTAKA TANAKA ◽  
LYN G. COOK

Coccus hesperidum L. (Hemiptera: Coccomorpha: Coccidae), the type species of the soft scale genus Coccus L., the family Coccidae and the whole of the scale insects (Coccoidea), is a cosmopolitan plant pest. Using DNA sequence data and morphological comparisons, we determine that there is a distinct species that is morphologically very similar to C. hesperidum. Here, we describe the species as Coccus praetermissus Lin & Tanaka sp. n., based on adult female specimens from Australia, Malaysia and Thailand. The adult female of C. praetermissus sp. n. differs from C. hesperidum in having dorsal setae with bluntly rounded tips, whereas they are sharply pointed in C. hesperidum. A detailed description of the newly recognised species is provided, incorporating adult female morphology and DNA sequences from mitochondrial and nuclear loci. Our examination of slides from The Natural History Museum, London, and several Australian institutions indicates that C. praetermissus sp. n. has been confused sometimes with C. hesperidum s. s. These findings have potential relevance to plant biosecurity and quarantine because C. hesperidum is cosmopolitan whereas C. praetermissus sp. n., which is also polyphagous and the two species can share many host plants, currently appears to be more geographically restricted. Additionally, there is deep genetic divergence within C. praetermissus sp. n. that might indicate that it is a cryptic species complex, but wider geographic sampling is required to test this possibility. 


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5783 ◽  
Author(s):  
María Capa ◽  
Torkild Bakken ◽  
Karin Meißner ◽  
Arne Nygren

BackgroundLong-bodied sphaerodorids (Annelida, Sphaerodoridae) is the common name for members of the three closely and morphologically homogenous currently accepted genera of benthic marine bristle worms:Ephesiella,EphesiopsisandSphaerodorum. Members of this group share the presence of two dorsal and longitudinal rows of macrotubercles with terminal papillae, and two longitudinal rows of microtubercles, features that are unique among sphaerodorids. Genera are distinguished by the chaetae morphology. Members ofEphesiellaare characterised by having compound chaetae (except, sometimes, simple chaetae in the first chaetigers),Sphaerodorumbear only simple chaetae, andEphesiopsishave both compound and simple chaetae in all parapodia.MethodsMitochondrial (partial COI and 16S rDNA) and nuclear (partial 18S rDNA and 28S rDNA) sequence data of long-bodied sphaerodorids with compound and simple chaetae, and an outgroup of additional seven sphaerodorid species were analysed separately and in combination using Bayesian inference (BA), and Maximum Likelihood (ML) methods. Long-bodied sphaerodorids from around the world (including type specimens) were examined under a range of optical equipment in order to evaluate putative generic and specific diagnostic features, in addition to intraspecific variability.ResultsPhylogenetic analyses of mitochondrial and nuclear DNA sequences of specimens identified asEphesiellaandSphaerodorum,based on chaeta morphology, were performed.SphaerodorumandEphesiellawere recovered as paraphyletic and nested within each other. Revision of current nominal species diagnostic features are performed and discussed.DiscussionResults contradict current generic definitions. Recovery of paraphyletic compound and simple chaetae clades urge the synonymization of these two genera of long-bodied sphaerodorids. Morphological data also suggest the synonymization ofEphesiopsis.


2020 ◽  
Vol 69 (5) ◽  
pp. 1033-1038
Author(s):  
Bernhard Seifert

Abstract The Gene and Gene Expression (GAGE) species concept, a new version of the Pragmatic Species Concept of Seifert (2014), is proposed as a concept applicable to any described recent or fossil eukaryotic organism independent from its mode of reproduction or evolutionary history. In addition to presenting the concept as such, the article also provides practical recommendations for taxonomists when delimiting species and describing taxa. The wording of the new concept contains a heading core sentence plus five attached sentences addressing essential conditions for its translation into a sound taxonomic practice: “Species are separable clusters that have passed a threshold of evolutionary divergence and are exclusively defined by nuclear DNA sequences and/or their expression products. Nuclear DNA sequences and their expression products are different character systems but have a highly correlated indicative function. Character systems with the least risk of epigenetic or ontogenetic modification have superior indicative value when conflicts between character systems of integrative studies arise. All character systems have to be described by an adequate numerics allowing cluster formation and determination of thresholds. Thresholds for each character system should be fixed by consensus among the experts under the principle of avoiding oversplitting or lumping. Clusters must not be the expression of intraspecific polymorphism.” Recognizing the distortions and conflicts caused to taxonomy through barcoding or through assessment on the basis of association with other organisms, the GAGE species concept strongly downgrades the use of cytoplasmic DNA of endosymbiotic origin (mtDNA, cpDNA) or DNA of closely associated microbes (e.g., Wolbachia bacteria) for final taxonomic decision-making. Recognizing the distortion of phylogenies by the high frequency of reticulate evolution, it is argued that delimiting and naming species has to be separated from constructing bifurcating phylogenetic trees. [Cytoplasmic DNA; lumping; nuclear DNA; numeric taxonomy; oversplitting; reticulate evolution.]


Botany ◽  
2008 ◽  
Vol 86 (9) ◽  
pp. 1039-1064 ◽  
Author(s):  
Stephen R. Downie ◽  
Deborah S. Katz-Downie ◽  
Feng-Jie Sun ◽  
Chang-Shook Lee

Intergeneric phylogenetic relationships within Apiaceae tribe Oenantheae were investigated using sequence data from the chloroplast DNA psbI–5′trnK(UUU) and nuclear ribosomal DNA internal transcribed spacer regions. One hundred and thirty-one accessions were examined, representing all 17 genera of the tribe and approximately one-half of its species. The cpDNA region includes four intergenic spacers and the rps16 intron and these noncoding loci were analyzed separately to assess their relative utility for resolving relationships. Separate maximum parsimony analyses of the entire psbI–5′trnK(UUU) and ITS regions, each with and without scored indels, yielded concordant trees. Phylogenies derived from maximum parsimony, Bayesian, or maximum likelihood analyses of combined chloroplast and nuclear DNA sequences for 82 accessions were highly resolved, well supported, and consistent. Among the five noncoding loci examined, the trnQ(UUG)–5′rps16 and 3′rps16–5′trnK(UUU) intergenic spacers are the most variable, with the latter contributing the greatest total number of parsimony informative characters relative to its size. The North American genera Atrema , Cynosciadium , Daucosma , Limnosciadium , Neogoezia , Oxypolis , Ptilimnium , and Trepocarpus ally with the western hemispheric and Australasian genus Lilaeopsis in a strongly supported North American Endemics clade that is a sister group to a clade composed primarily of Old World taxa ( Berula sensu lato, Cryptotaenia , Helosciadium , and Sium ). Oxypolis and Ptilimnium are not monophyletic, with the rachis-leaved members of each comprising a clade separate from their compound-leaved congeners. Dispersal-vicariance analysis suggests that the ancestors of the North American Endemics clade probably originated in Canada and the USA or in a broader ancestral area including Mexico and South America.


2011 ◽  
Vol 86 (3) ◽  
pp. 293-301 ◽  
Author(s):  
R. Petkevičiūtė ◽  
V. Stunžėnas ◽  
G. Stanevičiūtė

AbstractChromosome set and rDNA sequences of the larval digeneanCercariaeum crassumwere analysed in order to clarify its systematic position and possible adult form. Parasites were obtained from the sphaeriid bivalvePisidium amnicum, collected in Lithuanian and Finnish rivers. The karyotype is shown to consist of five pairs (2n = 10) of large, up to 14 μm, chromosomes. Complement, composed of a low diploid number of exclusively bi-armed elements, presumably arose through Robertsonian fusions of acrocentric chromosomes. Consistent with a Robertsonian-derived karyotype, one or two small, metacentric, mitotically stable B chromosomes were detected in the cells of parthenitae isolated from some host individuals. A phylogenetic analysis using rDNA internal transcribed spacer 2 (ITS2) and 28S sequences corroborates the allocation ofC. crassumto the family Allocreadiidae. In neighbour-joining and maximum parsimony phylogenetic treesC. crassumclusters into one clade withAllocreadiumspp., and is the closest sister group in relation toA. isoporum; the level of rDNA sequence divergence between them (2.67% for ITS2 and 1.16% for 28S) is consistent with the level expected for intrageneric variation. The present study adds significant information to a database for establishing species-specific characters for confident characterization of different developmental stages of allocreadiid species, clarification of their life cycles and evaluation of intra- and interspecific variability.


Sign in / Sign up

Export Citation Format

Share Document