Molecular identification of three of the most important mealybug species (Hemiptera: Sternorrhyncha: Coccoidea: Pseudococcidae) on ornamental plants in Guilan province, Iran

Zootaxa ◽  
2011 ◽  
Vol 3009 (1) ◽  
pp. 46 ◽  
Author(s):  
REZA HOSSEINI ◽  
JALIL HAJIZADEH

Mealybugs (Coccoidea: Pseudococcidae) are serious pests, particularly as invasive species on many agricultural products. Morphological identification of mealybugs is based on adult female characters that, in the absence of adult females or with damaged specimens, can be problematic, especially when identification is required urgently, such as that involving the exportation/importation market. In this study, species-specific primers were designed to identify three of the most abundant mealybug species found on ornamental plants in Guilan province, Iran: Planococcus citri (Risso), Pseudococcus viburni (Signoret) and Pseudococcus comstocki (Kuwana). By generating amplification products of different sizes, the three species-specific primers, along with universal COI primers, were successfully used in multiplex PCR tests to identify all three mealybug species in a single reaction. Analysis of a large array of specimens from different geographic locations on different host plants showed that this was a reliable and accurate method.

Zootaxa ◽  
2020 ◽  
Vol 4894 (4) ◽  
pp. 501-520
Author(s):  
VITOR C. PACHECO DA SILVA ◽  
MEHMET BORA KAYDAN ◽  
CESAR BASSO

Mealybugs (Hemiptera: Coccomorpha: Pseudococcidae) are important pests in fruit production in Uruguay; however, very little is known about the species involved. A survey of mealybugs associated especially with fruit crops (apple, citrus, figs, grapes, pears, quince and strawberry), and other crops like vegetables and sugar cane, ornamentals and weeds was performed between 2017 and 2019 in Uruguay, using integrated taxonomy (morphology and DNA analyses) for their identification. A total of 19 mealybug species were identified. The most common species were Planococcus ficus (Signoret), Pseudococcus scatoterrae Granara de Willink and Pseudococcus viburni (Signoret) on fruits, and Phenacoccus madeirensis Green, Phenacoccus peruvianus Granara de Willink and Planococcus citri (Risso) on ornamental plants, all of them causing damage to their hosts. This study presents nine new species records for Uruguay, besides the description of two new species. An identification key to the mealybugs in Uruguay is provided. 


2015 ◽  
Vol 15 (1) ◽  
Author(s):  
B. W. Bahder ◽  
M. L. Bollinger ◽  
M. R. Sudarshana ◽  
F. G. Zalom

Abstract Mealybugs (Hemiptera: Pseudococcidae) are economically significant agricultural pests on many different crops. Because of their small size and lack of easily visible characters for identification, determination of their taxonomic status is difficult and requires technical competency to prepare a slide-mounted specimen. The standard mounting technique does not allow for analysis of the genome of the specimen. Conversely, preparatory techniques for genetic analysis of mealybugs cause either loss of the entire individual or physical damage that can make morphology-based identification difficult. This study describes a simple protocol that does not impact physical integrity of the specimen for fixation and microscopic examination yet enables simultaneous DNA extraction for DNA-based identification of four mealybug species. All species prepared yielded high quality slide mounts, identified as Planococcus citri Risso, Pseudococcus viburni Signoret, Rhizoecus kondonis Kuwana, or Rhizoecus californicus Ferris. DNA extracted in this manner had higher purity and yield in the final eluate than in samples extracted using standard methods. DNA extracted was successfully amplified by polymerase chain reaction using primers for the cytochrome oxidase I gene and subsequently sequenced for all specimens. This protocol is likely to be applicable to other Hemiptera taxa that are preserved by slide mounting, allowing for both the preparation of a high-quality voucher specimen for morphological identification and simultaneous analysis of DNA for the same specimen. The methods used are technically less challenging than current standard procedures.


2012 ◽  
Vol 49 (2) ◽  
pp. 92-95 ◽  
Author(s):  
S. Kumari

AbstractSoil samples under the rhizosphere of Brasicca napus were collected from three localities (Bílé Podolí, Prague, Kylešovice). Two localities Prague and Kylešovice were positive for the presence of Pratylenchus neglectus. The species was identified using morphological features and the morphological identification was verified by using published species-specific primers and by sequencing 18S and 28S genes of ribosomal DNA.


1999 ◽  
Vol 77 (1) ◽  
pp. 11-21 ◽  
Author(s):  
Ursula Eberhardt ◽  
Lutz Walter ◽  
Ingrid Kottke

Among the mycorrhizal types of spruce, Tylospora-type mycorrhizae are the most constant and abundant. Two species of the genus Tylospora occur in Europe, Tylospora fibrillosa and Tylospora asterophora. Mycorrhizae of T. asterophora are described in detail for the first time. Sequences of the internal transcribed spacer (ITS) of the ribosomal genes were obtained from T. fibrillosa and T. asterophora mycorrhizae, sporocarps, and cultured mycelium. Discrimination and identification of the two species by ITS polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) are discussed in the light of inter- and intra-specific variability. Species-specific PCR primers were designed to distinguish both species. Molecular screening of Tylospora-type mycorrhizae from field material led to unambiguous results, whereas morphological identification is likely to fail because of great similarity even at the microscopic level.Key words: Tylospora asterophora, Tylospora fibrillosa, ectomycorrhizae, taxon specific primers (TSOPs), ITS sequences.


2020 ◽  
Vol 8 (3) ◽  
pp. 358
Author(s):  
Md Niamul Kabir ◽  
Ali Taheri ◽  
C. Korsi Dumenyo

Pectobacterium and Dickeya species, usually referred to as soft rot Enterobacteriaceae, are phytopathogenic genera of bacteria that cause soft rot and blackleg diseases and are responsible for significant yield losses in many crops across the globe. Diagnosis of soft rot disease is difficult through visual disease symptoms. Pathogen detection and identification methods based on cultural and morphological identification are time-consuming and not always reliable. A polymerase chain reaction (PCR)-based detection method with the species-specific primers is fast and reliable for detecting soft rot pathogens. We have developed a specific and sensitive detection system for some species of soft rot Pectobacteriaceae pathogens in the Pectobacterium and Dickeya genera based on the use of species-specific primers to amplify unique genomic segments. The specificities of primers were verified by PCR analysis of genomic DNA from 14 strains of Pectobacterium, 8 strains of Dickeya, and 6 strains of non-soft rot bacteria. This PCR assay provides a quick, simple, powerful, and reliable method for detection of soft rot bacteria.


2017 ◽  
Vol 57 (3) ◽  
pp. 219-227 ◽  
Author(s):  
Fouad Mokrini ◽  
Nicole Viaene ◽  
Lieven Waeyenberge ◽  
Abdelfattah A. Dababat ◽  
Maurice Moens

AbstractMorphological and molecular diversity among 11 populations of cereal cyst nematodes from different wheat production areas in Morocco was investigated using light microscopy, species-specific primers, complemented by the ITS-rDNA sequences. Morphometrics of cysts and second-stage juveniles (J2s) were generally within the expected ranges forHeterodera avenae; only the isolate from Aïn Jmaa showed morphometrics conforming to those ofH. latipons. When using species-specific primers forH. avenaeandH. latipons, the specific bands of 109 bp and 204 bp, respectively, confirmed the morphological identification. In addition, the internal transcribed spacer (ITS) regions were sequenced to study the diversity of the 11 populations. These sequences were compared with those ofHeteroderaspecies available in the GenBank database (www.ncbi.nlm.nih.gov) and confirmed again the identity of the species. Ten sequences of the ITS-rDNA were similar (99–100%) to the sequences ofH. avenaepublished in GenBank and three sequences, corresponding with one population, were similar (97–99%) toH. latipons.


Nematology ◽  
2009 ◽  
Vol 11 (6) ◽  
pp. 847-857 ◽  
Author(s):  
Lieven Waeyenberge ◽  
Nicole Viaene ◽  
Maurice Moens

Abstract ITS1, the 5.8S rRNA gene and ITS2 of the rDNA region were sequenced from 20 different Pratylenchus species. Additionally, the same region was sequenced from seven populations of P. penetrans. After purifying, cloning and sequencing the PCR products, all sequences were aligned in order to find unique sites suitable for the design of species-specific primers for P. penetrans. Since ITS regions showed variability between and even within populations of P. penetrans, only three small DNA sequences were suitable for the construction of three potentially useful species-specific primers. New species-specific primers were paired with existing universal ITS primers and tested in all possible primer combinations. The best performing primer set, supplemented with a universal 28S rDNA primer set that served as an internal control, was tested in duplex PCR. The ideal annealing temperature, Mg2+ concentration and primer ratios were then determined for the most promising primer set. The optimised duplex PCR was subsequently tested on a wide range of different Pratylenchus spp. and 25 P. penetrans populations originating from all over the world. To test the sensitivity, the duplex PCR was conducted on DNA extracted from a single P. penetrans nematode mixed with varying amounts of nematodes belonging to another Pratylenchus species. Results showed that a reliable and sensitive P. penetrans species-specific duplex PCR was constructed.


Sign in / Sign up

Export Citation Format

Share Document