Systematic position of Dinidoridae within the superfamily Pentatomoidea (Hemiptera: Heteroptera) revealed by the Bayesian phylogenetic analysis of the mitochondrial 12S and 16S rDNA sequences

Zootaxa ◽  
2012 ◽  
Vol 3423 (1) ◽  
pp. 61 ◽  
Author(s):  
JERZY A. LIS ◽  
PAWEŁ LIS ◽  
DARIUSZ J. ZIAJA ◽  
ANNA KOCOREK

Mitochondrial 12S and 16S rDNA sequences of five species of Dinidoridae Stål, 1868, a largely Paleotropical family, and 16 other shield bugs (Pentatomoidea) were studied. This was the first molecular examination of the systematic position of this family within the superfamily Pentatomoidea using more than a single dinidorid species. Phylogenetic trees obtained from the Bayesian inference of 12S and 16S sequences of these mitochondrial DNA, identified Dinidoridae as the monophylum and a sister group to the Tessaratomidae. Moreover, results of the study suggested a close molecular affinity of the genus Eumenotes to representatives of the subfamily Dinidorinae, which contradicts all previous morphological analyses that placed it within the subfamily Megymeninae. We suggest restoring taxonomic status of the tribe Eumenotini and removing it from the synonymy of Megymenini, leaving the genus with no subfamilial assignment for the moment.

1999 ◽  
Vol 77 (9) ◽  
pp. 1208-1213 ◽  
Author(s):  
Nancy J Ritchie ◽  
David D Myrold

Full-length 16S rDNA sequences were amplified directly from the nodules of Ceanothus americanus L. and Ceanothus thyrsiflorus Eschsch. using the polymerase chain reaction. Sequences were determined using an automated sequencer, compared against those in GenBank, and assembled into consensus sequences. The sequences were aligned with other full-length Frankia 16S rDNA sequences available from the data base. Phylogenetic trees were obtained using three different algorithms: neighbor joining, parsimony, and the maximum-likelihood method. All three methods showed that these Ceanothus L. microsymbionts were most closely related to the microsymbiont associated with Dryas drummondii Richardson ex Hook. Lvs. rather than Frankia isolated from the Elaeagnaceae.Key words: Frankia, Ceanothus, 16S rDNA.


2011 ◽  
Vol 86 (3) ◽  
pp. 293-301 ◽  
Author(s):  
R. Petkevičiūtė ◽  
V. Stunžėnas ◽  
G. Stanevičiūtė

AbstractChromosome set and rDNA sequences of the larval digeneanCercariaeum crassumwere analysed in order to clarify its systematic position and possible adult form. Parasites were obtained from the sphaeriid bivalvePisidium amnicum, collected in Lithuanian and Finnish rivers. The karyotype is shown to consist of five pairs (2n = 10) of large, up to 14 μm, chromosomes. Complement, composed of a low diploid number of exclusively bi-armed elements, presumably arose through Robertsonian fusions of acrocentric chromosomes. Consistent with a Robertsonian-derived karyotype, one or two small, metacentric, mitotically stable B chromosomes were detected in the cells of parthenitae isolated from some host individuals. A phylogenetic analysis using rDNA internal transcribed spacer 2 (ITS2) and 28S sequences corroborates the allocation ofC. crassumto the family Allocreadiidae. In neighbour-joining and maximum parsimony phylogenetic treesC. crassumclusters into one clade withAllocreadiumspp., and is the closest sister group in relation toA. isoporum; the level of rDNA sequence divergence between them (2.67% for ITS2 and 1.16% for 28S) is consistent with the level expected for intrageneric variation. The present study adds significant information to a database for establishing species-specific characters for confident characterization of different developmental stages of allocreadiid species, clarification of their life cycles and evaluation of intra- and interspecific variability.


2015 ◽  
Author(s):  
Julie M Allen ◽  
J Gordon Burleigh ◽  
Jessica E Light ◽  
David L Reed

Co-evolution between insects and their endosymbiotic bacteria can be detected by constructing and comparing their phylogenetic trees. Even though taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships and estimates of the number of endosymbiont lineages within a host group have used only a small percentage of available bacterial sequences. Here we examined how different sampling strategies of Gammaproteobacteria sequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from other Gammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. We found that sampling of 16S rDNA sequences affected the estimates of endosymbiont diversity in sucking lice until we reached a threshold of genetic diversity. Sampling by maximizing the diversity of 16S rDNA sequences was more efficient than simply randomly sampling available 16S rDNA sequences. Although simulation results support the finding of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that there is still uncertainty in estimates of the number of endosymbiont origins inferred from 16S rDNA alone.


2004 ◽  
Vol 54 (3) ◽  
pp. 929-933 ◽  
Author(s):  
Jung-Sook Lee ◽  
Yu-Ryang Pyun ◽  
Kyung Sook Bae

The taxonomic status of Bacillus ehimensis and Bacillus chitinolyticus was examined, based on their 16S rDNA sequences, DNA–DNA hybridization and other taxonomic characteristics. A phylogenetic analysis using 16S rDNA sequences revealed that the two species belong to the genus Paenibacillus. In particular, B. ehimensis KCTC 3748T and B. chitinolyticus KCTC 3791T were found to be phylogenetically closely related to Paenibacillus koreensis YC300T (98·3 % sequence similarity) and Paenibacillus chinjuensis WN9T (95·2 % sequence similarity), respectively. DNA–DNA hybridization values between B. ehimensis KCTC 3748T and P. koreensis YC300T were less than 26 %. An experiment using Paenibacillus-specific PCR primers, PAEN515F and 1377R, revealed that B. ehimensis and B. chitinolyticus had the same amplified 16S rDNA fragment as members of the genus Paenibacillus. Accordingly, it is proposed that B. ehimensis and B. chitinolyticus be transferred to the genus Paenibacillus as Paenibacillus ehimensis comb. nov. and Paenibacillus chitinolyticus comb. nov., respectively.


2019 ◽  
Vol 4 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Alifia Issabella Mulyawati ◽  
Tri Ardyati ◽  
Yoga Dwi Jatmiko

  Bacteriocin-like inhibitory substances (BLIS) produced by bacteria is a promising future food preservative agent. This study aimed to obtain bacterial strains that can produce broad-spectrum antibacterial agents and identify the best BLIS producer species based on 16S rDNA sequences. The bacterial strains were isolated from fer-mented mare’s milk using MRS and M17 agar medium. The isolates then were initially screened based on its antibacterial activity of crude cells against Staphylococcus aureus ATCC 6538. The selected strains were cultured and harvested for its cell-free supernatant (CFS). The pH of CFS was adjusted to 6.5 then used for antibacterial activity as-says against ten pathogenic bacteria. Also, the proteinaceous nature of BLIS compound was confirmed by testing with proteinase K. The gDNA of selected isolates was extracted and the 16S rDNA was am-plified using the polymerase chain reaction method then sequenced. The 16S rDNA sequences of the selected strains were used to identify the species using BLAST nucleotides from NCBI then the phylogenetic trees were constructed. 32 isolates was obtained, but only three iso-lates (BC9, SB7, and DC12) were selected as a result of antibacterial screening for further assays. The neutralized-CFS (N-CFS) of these isolates exhibited broad-spectrum antibacterial activity. The N-CFS could be assumed as BLIS. The isolate of BC9 was identified as Ba-cillus amyloliquefaciens strain BC9 that has 99.99 % similarity with B. amyloliquefaciens KC-1, SB7 was Lactobacillus plantarum strain SB7 that has 99.99 % similarity with Lb. plantarum JMC 1149T, and DC12 was Lactobacillus rhamnosus strain DC12 that has 100 % sim-ilarity with Lb. rhamnosus DSM 20021T. Thus, the BLIS produced by those strains is potential for future food and beverages preservations. 


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2187 ◽  
Author(s):  
Julie M. Allen ◽  
J. Gordon Burleigh ◽  
Jessica E. Light ◽  
David L. Reed

Phylogenetic trees can reveal the origins of endosymbiotic lineages of bacteria and detect patterns of co-evolution with their hosts. Although taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships are based on few available bacterial sequences. Here we examined how different sampling strategies ofGammaproteobacteriasequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from otherGammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. Sampling of 16S rDNA sequences affects the estimates of endosymbiont diversity in sucking lice until we reach a threshold of genetic diversity, the size of which depends on the sampling strategy. Sampling by maximizing the diversity of 16S rDNA sequences is more efficient than randomly sampling available 16S rDNA sequences. Although simulation results validate estimates of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that the precise number of endosymbiont origins is still uncertain.


2015 ◽  
Author(s):  
Julie M Allen ◽  
J Gordon Burleigh ◽  
Jessica E Light ◽  
David L Reed

Co-evolution between insects and their endosymbiotic bacteria can be detected by constructing and comparing their phylogenetic trees. Even though taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships and estimates of the number of endosymbiont lineages within a host group have used only a small percentage of available bacterial sequences. Here we examined how different sampling strategies of Gammaproteobacteria sequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from other Gammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. We found that sampling of 16S rDNA sequences affected the estimates of endosymbiont diversity in sucking lice until we reached a threshold of genetic diversity. Sampling by maximizing the diversity of 16S rDNA sequences was more efficient than simply randomly sampling available 16S rDNA sequences. Although simulation results support the finding of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that there is still uncertainty in estimates of the number of endosymbiont origins inferred from 16S rDNA alone.


1993 ◽  
Vol 114 (2) ◽  
pp. 173-177 ◽  
Author(s):  
A. Ibrahim ◽  
B.M. Goebel ◽  
W. Liesack ◽  
M. Griffiths ◽  
E. Stackebrandt

Sign in / Sign up

Export Citation Format

Share Document