New replacement name for Anaperus Graff, 1911 (Acoelomorpha: Acoela: Convolutidae)

Zootaxa ◽  
2018 ◽  
Vol 4418 (5) ◽  
pp. 499 ◽  
Author(s):  
J. A. RIVAZ HERNÁNDEZ

The acoel genus Anaperus was established by Graff in 1911 for Amphiscolops gardineri Graff, 1910, making Anaperus gardineri (Graff, 1910) its type species. Since then, six more valid species were described: A. tvaerminnensis (Luther, 1912); A. sulcatus Beklemischev, 1914; A. rubellus Westblad, 1945; A. biaculeatus Boguta, 1970; A. ornatus Beltagi, 2001; A. singularis Hooge & Smith, 2004. A seventh species, A. australis Westblad, 1952, is incertae sedis (Dörjes & Karling, 1975). The genus was placed to family Convolutidae Graff, 1905, until Dörjes (1968) erected the family Anaperidae on the basis of a distinctive male copulatory apparatus. Jondelius et al. (2011) returned it to Convolutidae on the basis of molecular–sequence data.

Nematology ◽  
2016 ◽  
Vol 18 (10) ◽  
pp. 1125-1139
Author(s):  
Daniel Leduc ◽  
Zeng Qi Zhao

Odontophora is a globally distributed marine nematode genus common in intertidal and subtidal sediments. Odontophora is one of the most diverse genus of the family Axonolaimidae with over 30 valid species described to date; however, the last revision of the genus was made over four decades ago. In addition, limited molecular sequence data are available for the Axonolaimidae and relationships among axonolaimid genera have not yet been investigated using molecular tools. Here, an updated list of species and a key for the identification of all 34 valid species is provided, and preliminary analyses of phylogenetic relationships within the Axonolaimidae are conducted using SSU and D2-D3 of LSU molecular sequences. Odontophora atrox sp. n. is described from intertidal sediments of Wellington, North Island of New Zealand, and is characterised by cephalic setae 1.1-1.5 corresponding body diam. long, 12 subcephalic setae, eight of which are slightly shorter and four of which are markedly shorter than the cephalic setae, excretory pore located slightly posterior to the amphids, and nerve ring located at two-thirds to three-quarters of pharynx length from anterior. Males are characterised by weakly arcuate spicules and tapering gubernacular apophyses, 9-10 small tubular precloacal supplements, cloacal aperture flanked by two sets of heavily cuticularised and eversible spines, and two elongated laterodorsal setae near the tail tip. Preliminary analyses of phylogenetic relationships within the Axonolaimidae provide some support for the monophyly of Odontophora, but drawing more solid inferences about relationships within the Axonolaimidae will require more molecular sequence data of accurately (and verifiably) identified species.


Phytotaxa ◽  
2014 ◽  
Vol 176 (1) ◽  
pp. 219 ◽  
Author(s):  
ASHA J. DISSANAYAKE ◽  
RUVISHIKA S. JAYAWARDENA ◽  
SARANYAPHAT BOONMEE ◽  
KASUN M. THAMBUGALA ◽  
QING TIAN ◽  
...  

The family Myriangiaceae is relatively poorly known amongst the Dothideomycetes and includes genera which are saprobic, epiphytic and parasitic on the bark, leaves and branches of various plants. The family has not undergone any recent revision, however, molecular data has shown it to be a well-resolved family closely linked to Elsinoaceae in Myriangiales. Both morphological and molecular characters indicate that Elsinoaceae differs from Myriangiaceae. In Elsinoaceae, small numbers of asci form in locules in light coloured pseudostromata, which form typical scab-like blemishes on leaf or fruit surfaces. The coelomycetous, “Sphaceloma”-like asexual state of Elsinoaceae, form more frequently than the sexual state; conidiogenesis is phialidic and conidia are 1-celled and hyaline. In Myriangiaceae, locules with single asci are scattered in a superficial, coriaceous to sub-carbonaceous, black ascostromata and do not form scab-like blemishes. No asexual state is known. In this study, we revisit the family Myriangiaceae, and accept ten genera, providing descriptions and discussion on the generic types of Anhellia, Ascostratum, Butleria, Dictyocyclus, Diplotheca, Eurytheca, Hemimyriangium, Micularia, Myriangium and Zukaliopsis. The genera of Myriangiaceae are compared and contrasted. Myriangium duriaei is the type species of the family, while Diplotheca is similar and may possibly be congeneric. The placement of Anhellia in Myriangiaceae is supported by morphological and molecular data. Because of similarities with Myriangium, Ascostratum (A. insigne), Butleria (B. inaghatahani), Dictyocyclus (D. hydrangea), Eurytheca (E. trinitensis), Hemimyriangium (H. betulae), Micularia (M. merremiae) and Zukaliopsis (Z. amazonica) are placed in Myriangiaceae. Molecular sequence data from fresh collections is required to confirm the relationships and placement of the genera in this family.


Zootaxa ◽  
2017 ◽  
Vol 4238 (1) ◽  
pp. 58 ◽  
Author(s):  
ATSUSHI MOCHIZUKI ◽  
CHARLES S. HENRY ◽  
PETER DUELLI

The small lacewing genus Apertochrysa comprises species from Africa, Asia and Australia. All lack a tignum, but otherwise resemble distantly related genera. We show that Apertochrysa does not form a monophyletic clade, based on analyses of molecular sequence data and morphological traits such as the presence and shape of the male gonapsis, wing venation, and larval setae. Apertochrysa kichijoi forms a clade with Eremochrysa, Suarius and Chrysemosa, whereas A. albolineatoides belongs to a clade that includes Cunctochrysa. Apertochrysa albolineatoides should become a new combination as Cunctochrysa albolineatoides, while A. kichijoi will have to be transferred to a new genus. The Australian A. edwardsi, the African A. eurydera and the type species of the genus Apertochrysa, A. umbrosa, join the large Pseudomallada group. Relationships of A. umbrosa are less certain, because for it we could amplify only one of the three nuclear genes used in the overall analysis. However, in all morphological traits tested, that species strongly resembles A. edwardsi and A. eurydera and thus is very likely just another exceptional Pseudomallada lacking a tignum. The fate of the genus name Apertochrysa depends on additional molecular and morphological analyses of A. umbrosa. 


2007 ◽  
Vol 21 (3) ◽  
pp. 207 ◽  
Author(s):  
Ronald M. Clouse ◽  
Gonzalo Giribet

Opiliones (harvestmen) in the suborder Cyphophthalmi are not known to disperse across oceans and each family in the suborder is restricted to a clear biogeographic region. While undertaking a revisionary study of the South-east Asian family Stylocellidae, two collections of stylocellids from New Guinea were noted. This was a surprising find, since the island appears never to have had a land connection with Eurasia, where the rest of the family members are found. Here, 21 New Guinean specimens collected from the westernmost end of the island (Manokwari Province, Indonesia) are described and their relationships to other cyphophthalmids are analysed using molecular sequence data. The specimens represent three species, Stylocellus lydekkeri, sp. nov., S. novaguinea, sp. nov. and undescribed females of a probable third species, which are described and illustrated using scanning electron microscope and stereomicroscope photographs. Stylocellus novaguinea, sp. nov. is described from a single male and it was collected with a juvenile and the three females of the apparent third species. Molecular phylogenetic analyses indicate that the new species are indeed in the family Stylocellidae and they therefore reached western New Guinea by dispersing through Lydekker’s line – the easternmost limit of poor dispersers from Eurasia. The New Guinean species may indicate at least two episodes of oceanic dispersal by Cyphophthalmi, a phenomenon here described for the first time. Alternatively, the presence in New Guinea of poor dispersers from Eurasia may suggest novel hypotheses about the history of the island.


Zootaxa ◽  
2003 ◽  
Vol 152 (1) ◽  
pp. 1 ◽  
Author(s):  
GREGORY D. EDGECOMBE ◽  
GONZALO GIRIBET

The cosmopolitan, parthenogenetic centipede Lamyctes coeculus (Brölemann, 1889), type species of Lamyctinus Silvestri, 1909, occurs in New South Wales and Lord Howe Island, Australia, the former genetically identical to specimens from Tucumán, Argentina. Parsimony analysis of complete sequences of 18S rRNA and fragments of 28S rRNA, 16S rRNA, and cytochrome c oxidase subunit I for the Lamyctes-Henicops group suggests that loss of ocelli in Lamyctes coeculus has an independent origin from blindness in Lamyctes hellyeri n. sp. from northern Tasmania. Lamyctinus is nested within Lamyctes Meinert, 1868, its senior synonym. Lamyctes hellyeri is known exclusively from females in gardens, and is probably introduced to Tasmania.


2000 ◽  
Vol 74 (5) ◽  
pp. 839-852 ◽  
Author(s):  
D. M. Haasl

Phylogenetic relationships within the neogastropod family Nassariidae are poorly understood as are relationships between the Nassariidae and other fossil and extant buccinid taxa. The poor resolution of nassariid and buccinoidean relationships is due to: 1) the complex distribution among these gastropods of characters commonly used in classification; 2) a number of Mesozoic and Paleogene genera whose relationships to extant buccinoidean lineages are poorly constrained; and 3) a lack of previous efforts to address these problems on a rigorous, phylogenetic basis.The results of a phylogenetic analysis of nassariid genera did not decisively support the monophyly of the family. The buccinid subfamily Photinae was an extant sister group to the Nassariinae in a phylogenetic analysis of extant taxa and on many cladograms from an analysis combining fossil and extant taxa. In addition, Buccitriton (representing the Paleogene Tritiaria group) was a sister taxon to the Nassariinae in all analyses in which it was included, regardless of the identity of the extant nassariine sister group. This suggests that the photines, which likely arose from a Tritiaria ancestor, are the closest living relatives to the Nassariinae. Many Paleogene fossil “buccinoid” taxa appear to be more distantly related to the Nassariinae and possibly to the rest of the nassariids as well. Stratigraphic range data combined with the results of this study suggest that the Nassariinae diversified rapidly in the early Miocene and achieved a cosmopolitan distribution early in their history. A largely Indo-Pacific subclade was consistently deeply-nested within the Nassariinae, suggesting that nassariines invaded the Indo-Pacific region most recently. The timing of this invasion is difficult to estimate but had occurred by the end of the Miocene. Further analyses using molecular sequence data, relative stratigraphic position, or focusing in more detail on the Paleogene taxa are required to resolve the identity of the sister group to the Nassariinae with greater confidence.


Zootaxa ◽  
2019 ◽  
Vol 4642 (1) ◽  
pp. 1-79 ◽  
Author(s):  
JAMES WILDER ORR ◽  
INGRID SPIES ◽  
DUANE E. STEVENSON ◽  
GARY C. LONGO ◽  
YOSHIAKI KAI ◽  
...  

Phylogenetic relationships of snailfishes of the family Liparidae were analyzed on the basis of two sets of molecular sequence data: one from the mitochondrial DNA cytochrome c oxidase subunit one gene (COI) and another from restriction-site associated genome-wide sequences (RADseq). The analysis of COI sequence data from at least 122 species of 18 genera from the Pacific, Atlantic, and Southern oceans resulted in a moderately well-resolved phylogeny among the major clades, albeit with significant polytomy among central clades. Nectoliparis was the sister of all other members of the family, followed by Liparis. Liparis, Careproctus, and Paraliparis were paraphyletic. Liparis was recovered in two closely related clades, with L. fucensis sister of all other liparids except Nectoliparis, and both Careproctus and Paraliparis were each recovered among at least three widely separated clades. The RADseq analysis of 26 species of 11 genera from the eastern North Pacific strongly confirmed the overall results of the COI analysis, with the exception of the paraphyly of Liparis due to the absence of L. fucensis. Our results show that the pelvic disc has been independently lost multiple times and the pectoral-fin girdle has been independently reduced in multiple lineages. 


Zootaxa ◽  
2010 ◽  
Vol 2553 (1) ◽  
pp. 35 ◽  
Author(s):  
MARJOLAINE GIROUX ◽  
TERRY A. WHEELER

Sarcophaga (Bulbostyla) subgen. nov. is described as a new subgenus of Sarcophaga Meigen to accommodate some species previously assigned to the subgenus S. (Neobellieria) Blanchard. Sarcophaga (Bulbostyla) contains nine species: S. airosalis sp. nov., S. cadyi sp. nov. (type species), S. cuautla sp. nov., S. fattigina sp. nov., S. ironalis sp. nov., S. semimarginalis Hall, S. sternalis (Reinhard), S. subdiscalis Aldrich and S. yorkii Parker. All species are described and illustrated and a key to the species is provided. The species within the subgenus are morphologically uniform externally and are distinguished mostly on male genitalic characters. Phylogenetic relationships within Bulbostyla are unresolved based on morphological characters and will require consideration of additional characters, such as molecular sequence data. The genus-group taxon Robackina Lopes is removed from synonymy with the subgenus Sarcophaga (Neobellieria) and reinstated as a valid subgenus of Sarcophaga (stat. nov.) to accommodate the single New World species Sarcophaga triplasia Wulp. A lectotype is designated for S. triplasia. The subgenus and species are redescribed and illustrated.


Insects ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 19
Author(s):  
Jan Ševčík ◽  
Heikki Hippa ◽  
Nikola Burdíková

The following 17 extant new species of Sciaroidea (Diptera: Bibionomorpha) are described: Bolitophila nikolae Ševčík sp. nov. (Bolitophilidae, Taiwan), Catocha jingfui sp. nov. (Cecidomyiidae, Taiwan), Catocha manmiaoe sp. nov. (Cecidomyiidae, Taiwan), Catocha shengfengi sp. nov. (Cecidomyiidae, Taiwan), Planetella taiwanensis sp. nov. (Cecidomyiidae, Taiwan), Diadocidia pseudospinusola sp. nov. (Diadocidiidae, Taiwan), Asioditomyia bruneicola sp. nov. (Ditomyiidae, Brunei), Asioditomyia lacii sp. nov. (Ditomyiidae, Taiwan), Ditomyia asiatica sp. nov. (Ditomyiidae, Thailand), Chetoneura davidi sp. nov. (Keroplatidae, Brunei), Euceroplatus mantici sp. nov. (Keroplatidae, Thailand), Setostylus fangshuoi sp. nov. (Keroplatidae, Taiwan), Platyceridion yunfui sp. nov. (Keroplatidae, Hainan), Terocelion adami sp. nov. (Keroplatidae, Taiwan), Hadroneura martini sp. nov. (Mycetophilidae, Taiwan), Paratinia furcata sp. nov. (Mycetophilidae, Czech Republic, Slovakia), and Nepaletricha sikorai sp. nov. (Sciaroidea incertae sedis, Thailand). Two new genera are described from the mid-Cretaceous Burmese amber, Burmasymmerus gen. nov. (Ditomyiidae, type species Burmasymmerus korneliae sp. nov., including also B. wieslawi sp. nov.), representing the first record of the family Ditomyiidae from the Mesozoic, and Burmatricha gen. nov. (Sciaroidea incertae sedis, type species Burmatricha mesozoica sp. nov.). Molecular phylogeny of Ditomyiidae, based on two DNA markers (28S, COI), as well as that of Catocha Haliday, 1833, based on the mitochondrial COI and 16S fragments, are also presented.


2008 ◽  
Vol 54 (2) ◽  
pp. 223-238 ◽  
Author(s):  
Henrik Glenner ◽  
Philip Francis Thomsen ◽  
Alexey V. Rybakov ◽  
Bella S. Galil ◽  
Jens T. Hoeg

Within parasitic barnacles of the family Sacculinidae, the genus Heterosaccus is the third largest, with 12 species infesting various brachyuran hosts throughout the world. As part of an effort to reconstruct rhizocephalan phylogeny we performed an analysis of four species of Heterosaccus and of selected sacculinid and non-sacculinid rhizocephalans. We used both molecular sequence data (16s rDNA and 18s rDNA) and morphological characters from an SEM analysis of the cypris larvae. Using Bayesian methods we obtained a highly supported tree in which the four species of Heterosaccus form a monophylum, whereas both the genus Sacculina and the family Sacculinidae are polyphyletic. The sistergroup to Heterosaccus is a clade consisting of the sacculinids Loxothylacus panopaei and the "classical" rhizocephalan Sacculina carcini. The molecular results found support in cypris morphology, where we identified two distinct synapomorphies for Heterosaccus, both present in male cyprids only: A large flap extending posteriorly from the third antennular segment, and the male-specific aesthetasc on the third segment being reduced to a rudiment or lacking completely. Female cyprids didn't show generic level apomorphies but resembled those of other sacculinid species. No morphological synapomorphies were identified between Heterosaccus, L. panopaei and S. carcini. While larval characters proved to be informative, we conclude that future studies on rhizocephalan taxonomy must rely primarily on molecular data, both to provide an overall phylogenetic framework and to assure an accurate identification of species for biogeographical and other biological purposes.


Sign in / Sign up

Export Citation Format

Share Document