scholarly journals Redescription of Milnesium alpigenum Ehrenberg, 1853 (Tardigrada: Apochela) and a description of Milnesium inceptum sp. nov., a tardigrade laboratory model

Zootaxa ◽  
2019 ◽  
Vol 4586 (1) ◽  
pp. 35 ◽  
Author(s):  
WITOLD MOREK ◽  
ATSUSHI C. SUZUKI ◽  
RALPH O. SCHILL ◽  
DILIAN GEORGIEV ◽  
MARIA YANKOVA ◽  
...  

Intra- and interspecific variability, being at the very core of alpha taxonomy, has been a long-standing topic of debate among tardigrade taxonomists. Early studies tended to assume that tardigrades exhibit wide intraspecific variation. However, with more careful morphological studies, especially those incorporating molecular tools that allow for an independent verification of species identifications based on phenotypic traits, we now recognise that ranges of tardigrade intraspecific variability are narrower, and that differences between species may be more subtle than previously assumed. The taxonomic history of the genus Milnesium, and more specifically that of the nominal species, M. tardigradum described by Doyère in 1840, is a good illustration of the evolution of views on intraspecific variability in tardigrades. The assumption of wide intraspecific variability in claw morphology led Marcus (1928) to synonymise two species with different claw configurations, M. alpigenum and M. quadrifidum, with M. tardigradum. Currently claw configuration is recognised as one of the key diagnostic traits in the genus Milnesium, and the two species suppressed by Marcus have recently been suggested to be valid. In this study, we clarify the taxonomic status of M. alpigenum, a species that for nearly a century was considered invalid. We redescribe M. alpigenum, using a population collected from the locus typicus, by the means of integrative taxonomy, i.e. including light microscopy, scanning electron microscopy, ontogenetic observations, and genetic barcoding. Moreover, the redescription of M. alpigenum allowed us to verify the uncertain taxonomic status of two popular laboratory models that were originally considered to be M. tardigradum; though one was recently reidentified as M. cf. alpigenum. Our analysis showed that both laboratory strains, despite being morphologically and morphometrically nearly identical to M. alpigenum, in fact represent a new species, M. inceptum sp. nov.  The two species, being disnguishable only by statistical morphometry and/or DNA sequences, are the first example of pseudocryptic species in tardigrades. 

Zootaxa ◽  
2021 ◽  
Vol 5068 (2) ◽  
pp. 211-239
Author(s):  
CLAUDIA LANSAC ◽  
RODRIGO AGUAYO ◽  
IGNACIO DE LA RIVA

The genus Gastrotheca (Anura: Hemiphractidae) is a group of marsupial frogs particularly diverse in Andean regions. Several taxonomic studies of this genus have been conducted in the humid cloud forests—or Yungas—of the Andean eastern slopes of central Bolivia (departments of Cochabamba and Santa Cruz). Yet, the distinction among three species that occur sympatrically in these forests, G. lauzuricae (proposed as a junior synonym of G. coeruleomaculatus in 2015), G. piperata, and G. splendens, remains unclear since the morphological characters that purportedly support their differentiation are variable and partly shared among them. We have carried out external morphological studies, including multivariate morphometric analyses, to assess how they support the taxonomic status of these three species. We also evaluated characters of the cranial osteology of a sample of six individuals using micro CT-scanning. Principal component and linear discriminant analyses resulted in a great overlap among the putative species. Cranial osteological comparisons did not reveal highly significant differences among them, but suggested that different degrees of hyperossification could be related to the developmental state of individuals. Our results indicate that most morphological and osteological reported differences between the three species likely represent intraspecific variation. Thus, we propose that the three nominal species belong to a single biological entity, for which the name Gastrotheca splendens (Schmidt, 1857) has priority. We also restrict the name Gastrotheca coeruleomaculatus (Werner, 1899) to externally similar congeneric populations from the Yungas forests of department of La Paz, but highlighting the need of a detailed evaluation of their taxonomic identity.  


Zootaxa ◽  
2011 ◽  
Vol 2876 (1) ◽  
pp. 1 ◽  
Author(s):  
AURÉLIEN MIRALLES ◽  
JÖRN KÖHLER ◽  
FRANK GLAW ◽  
MIGUEL VENCES

The present paper constitutes a study on a taxonomically confusing group of closely related species belonging to the Malagasy skink genus Madascincus, currently encompassing the nominal species M. polleni, M. intermedius and M. stumpffi. Based on combined analyses of mitochondrial and nuclear DNA sequences (ND1 and RAG2 genes, respectively), and morphological examination, we provide evidence for the existence of at least four distinct evolutionary lineages within this complex: Madascincus stumpffi; Madascincus arenicola sp. nov. from northern Madagascar; and two cryptic species morphologically similar to the name-bearing types of M. polleni and M. intermedius. The two latter species, although genetically distinct, appear to be morphologically indistinguishable and their taxonomic status cannot be resolved until a better sampling will be available.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5783 ◽  
Author(s):  
María Capa ◽  
Torkild Bakken ◽  
Karin Meißner ◽  
Arne Nygren

BackgroundLong-bodied sphaerodorids (Annelida, Sphaerodoridae) is the common name for members of the three closely and morphologically homogenous currently accepted genera of benthic marine bristle worms:Ephesiella,EphesiopsisandSphaerodorum. Members of this group share the presence of two dorsal and longitudinal rows of macrotubercles with terminal papillae, and two longitudinal rows of microtubercles, features that are unique among sphaerodorids. Genera are distinguished by the chaetae morphology. Members ofEphesiellaare characterised by having compound chaetae (except, sometimes, simple chaetae in the first chaetigers),Sphaerodorumbear only simple chaetae, andEphesiopsishave both compound and simple chaetae in all parapodia.MethodsMitochondrial (partial COI and 16S rDNA) and nuclear (partial 18S rDNA and 28S rDNA) sequence data of long-bodied sphaerodorids with compound and simple chaetae, and an outgroup of additional seven sphaerodorid species were analysed separately and in combination using Bayesian inference (BA), and Maximum Likelihood (ML) methods. Long-bodied sphaerodorids from around the world (including type specimens) were examined under a range of optical equipment in order to evaluate putative generic and specific diagnostic features, in addition to intraspecific variability.ResultsPhylogenetic analyses of mitochondrial and nuclear DNA sequences of specimens identified asEphesiellaandSphaerodorum,based on chaeta morphology, were performed.SphaerodorumandEphesiellawere recovered as paraphyletic and nested within each other. Revision of current nominal species diagnostic features are performed and discussed.DiscussionResults contradict current generic definitions. Recovery of paraphyletic compound and simple chaetae clades urge the synonymization of these two genera of long-bodied sphaerodorids. Morphological data also suggest the synonymization ofEphesiopsis.


2020 ◽  
Vol 188 (3) ◽  
pp. 694-716 ◽  
Author(s):  
Daniel Stec ◽  
Łukasz Krzywański ◽  
Krzysztof Zawierucha ◽  
Łukasz Michalczyk

Abstract Incomplete descriptions of nominal taxa are one of the most significant obstacles in modern taxonomy, including the taxonomy of Tardigrada. Another major problem in tardigrade systematics is the lack of tests for the reliability of genetic markers in species delineation. Here, we employ an integrative taxonomy approach to redescribe the nominal taxon for the P. areolatus complex, Paramacrobiotus areolatus. Moreover, we obtained multilocus DNA sequences for another 16 populations representing 9–12 Paramacrobiotus species collected from Europe, North America, Africa and Australia, enabling us to reconstruct the most extensive phylogeny of the genus to date. The identification of a pair of potentially cryptic dioecious P. areolatus complex species with divergent genetic distances in ITS2 (1.4%) and COI (13.8%) provided an opportunity to test the biological species concept for the first time in the history of tardigrade taxonomy. Intra- and interpopulation crosses did not differ in reproductive success in terms of F1 offspring. However, because of the low F1 family sizes, we were unfortunately unable to test F1 hybrid fertility. Although our results are only partially conclusive, they offer a baseline not only for further taxonomic and phylogenetic research on the areolatus complex, but also for studies on species delineation in tardigrades in general.


Zootaxa ◽  
2011 ◽  
Vol 3132 (1) ◽  
pp. 1 ◽  
Author(s):  
SANTIAGO CASTROVIEJO-FISHER ◽  
CARLES VILÀ ◽  
JOSÉ AYARZAGÜENA ◽  
MICHEL BLANC ◽  
RAFFAEL ERNST

Basic information about the taxonomy, biology and distribution of Hyalinobatrachium glassfrogs of the Guiana Shield (GS) is scarce, ambiguous, and in many cases even contradictory. In this review we aim to clarify the current taxonomic status of this group by means of phenotypic (morphology, morphometrics and bioacoustics) and molecular (mitochondrial DNA sequences) comparisons. Eight species have previously been recognized for the GS: H. crurifasciatum, H. eccentricum, H. fleischmanni (initially described as Hylella cappellei in the GS), H. iaspidiense (with the putative synonym H. nouraguense), H. ignioculus, H. mesai, H. mondolfii, and H. taylori. Our data support the resurrection of H . cappellei from its synonymy with H. fleischmanni. Hyalinobatrachium crurifasciatum, H. eccentricum, and H. ignioculus are proposed as junior synonyms of H. cappellei. We show that none of the four paratypes of H. taylori belong to this species and we assign two to H. cappellei and two to H. mondolfii. Additional specimens previously identified as H. taylori are reassigned to H. cappellei, and hence H. taylori is redefined. Hyalinobatrachium nouraguense is confirmed as a junior syn-onym of H. iaspidiense. We also describe two new species of Hyalinobatrachium from French Guiana: Hyalinobatrachium kawense sp. nov. and Hyalinobatrachium tricolor sp. nov. In addition, and in concordance with the new taxonomic rearrangements, we provide diagnostic characters for all species, known distributions and main sources of references for their biology. We also report new distribution records for H. iaspidiense and H. mondolfii, and describe the formerly unknown tadpole of the later. Consequently, we recognize seven species of Hyalinobatrachium for the Guiana Shield: H. cappellei, H. iaspidiense, H. kawense sp. nov., H. mesai, H. mondolfii, H. taylori, and H. tricolor sp. nov. We discuss the suitability of integrative taxonomy as an approach to identify taxonomic uncertainty and consider its significance for conservation purposes. We also address the implications of our results to understand phylogeographic patterns in this area.


Zootaxa ◽  
2018 ◽  
Vol 4476 (1) ◽  
pp. 168
Author(s):  
PAKORN TONGBOONKUA ◽  
MAO-YING LEE ◽  
WEI-JEN CHEN

Left-eyed flounders of the genus Chascanopsetta Alcock 1894 (Bothidae) occur in the Indian, Pacific, and Atlantic oceans at depths ranging from 120 to 1500 meters. They possess some unique features in bothid fishes including a strongly compressed and elongated body and a tremendously large mouth. Currently, nine species of Chascanopsetta are recognized, and three of them (C. micrognatha Amaoka & Yamamoto 1984, C. lugubris Alcock 1894 and C. prognatha Norman 1939) are distributed in the West Pacific. We collected 25 specimens of Chascanopsetta during 11 biodiversity expeditions carried out mainly in the West Pacific. Among them, eight specimens taken off Papua New Guinea present morphological features that differ from those of the three nominal species known in the West Pacific. In this study, we examined these eight specimens of unknown affinity and compared their morphology to that of specimens of other congeneric species. Results of these comparisons showed that these specimens represent an undescribed species of Chascanopsetta, named herein, C. novaeguineae sp. nov.. The new species resembles C. elski Foroshchuk 1991, which is known only from the Saya de Malha Bank in the western Indian Ocean, in having a high number of gill rakers (> 13). However, the combination of the following characters further distinguishes C. novaeguineae sp. nov. from C. elski: longer jaws, narrower interorbital width, and number of pseudobranches (21–25 vs. 26–27). The DNA sequences from the mitochondrial cytochrome oxidase subunit I (COI) gene from C. novaeguineae sp. nov. and other species were obtained and compared to confirm its taxonomic status and to infer its tentative phylogenetic position within the Chascanopsetta.


Zootaxa ◽  
2020 ◽  
Vol 4768 (4) ◽  
pp. 479-498
Author(s):  
MIREILLE BELLE MBOU OKASSA ◽  
DOLLON MBAMA NTABI ◽  
ARSENE LENGA

The purpose of this study was to identify the taxonomic status of several individuals belonging to the genus Euseius, collected from three host plants (cassava, okra, and chilli) in the Republic of the Congo, using morphometric and molecular analysis. For this, hierarchical ascending classification on principal component analysis was performed using morphological measurements from 21 and 22 individuals of E. fustis and Euseius sp., respectively, with the original description of Euseius neodossei considered. For molecular analysis, two DNA fragments were amplified and sequenced: the mitochondrial 12S rRNA and the nuclear ribosomal region ITSS. This integrative approach found that (1) morphological differences existed between the Euseius sp. and both E. neodossei and E. fustis, and (2) both mitochondrial DNA fragments showed a clear delineation between Euseius sp. and E. fustis. The results obtained highlight the value of using integrative taxonomy to improve the identification of species in under-sampled areas and the need to increase the number of DNA sequences deposited in GenBank database from this region. This is the first time that DNA sequences of mites from the Congo (Brazzaville) have been deposited in this database. 


2010 ◽  
Vol 135 (5) ◽  
pp. 445-455 ◽  
Author(s):  
Neil O. Anderson ◽  
Adnan Younis ◽  
Ye Sun

The large genome size of easter lily [Lilium longiflorum (77.1 pg/2C nucleus)], coupled with repetitive DNA sequences, makes it difficult to use molecular techniques to identify or fingerprint lily (Lilium) species, hybrids, and clones. Previous research demonstrated that amplified fragment length polymorphisms could not be optimized for consistency and repeatability to obtain reliable genetic variation assessments of lily species and clones. The objective of this research was to analyze the effectiveness and stringency of intersimple sequence repeats (ISSRs) to determine genetic differences between L. longiflorum ‘Nellie White’ clonal ramet populations from bulb growers over years. DNA from closely related clones of L. longiflorum ‘Nellie White’ included 2002 (n = 11 bulb lots) and 2003 (n = 12 bulb lots). Comparison cultivars and species were also included. Five University of British Columbia (UBC) primers (P808, P810, P811, P814, and P818) that were used produced 56 polymorphic loci. ISSR banding patterns were consistent among three replications within ‘Nellie White’ clonal genotypes. ‘Nellie White’ clones differed significantly within (82%) and among (18%) growers in 2002 and 2003. ‘Nellie White’ clones are not uniform or part of a single ramet population. Principal clades within years separated at Nei's genetic distances (GDs) of GD = 0.6 (growers 2, 4, and 12) to GD = 0.82 (grower 6) in 2002 and GD = 0.51 (grower 4) to GD = 0.78 (grower 14). The most closely related ‘Nellie White’ clones within growers ranged from GD = 0.8 to 0.95 in 2002 and GD = 0.7 to 0.91 for 2003. Five top-performing growers (1, and 3–6) from previous morphological studies and, particularly growers 3 and 5, were in similar clades, cosegregating with phenotypic traits of stem emergence and flowering dates. The lack of a meiotic sieve (Muller's ratchet) may be responsible for the high level of mutational differences present in the ‘Nellie White’ clones and significantly affects the ability of commercial greenhouse growers to produce a uniform easter lily crop, particularly in years when the Easter holiday is early.


Author(s):  
Thiago R. Carvalho ◽  
Leandro J.C.L. Moraes ◽  
Ariadne Angulo ◽  
Fernanda P. Werneck ◽  
Javier Icochea ◽  
...  

Adenomera simonstuarti is a poorly known species complex inhabiting western Amazonia. Here we reevaluate the species diversity within this complex based on previously documented and newly acquired molecular and phenotypic data. We also redescribe the calling pattern of the nominal species based on the original recording (Peru) and a new recording (Brazil). Our results indicate eight geographically structured genetic lineages and the nominal species with a multi-note call pattern. This is the first association of calls and DNA sequence from a voucher specimen, thereby enabling the assignment of A. simonstuarti to one specific lineage within the complex. The multi-note call was not previously reported and represents an important additional diagnostic character within Adenomera. The geographic distribution of A. simonstuarti is substantially narrowed down to the southwestern portion of the entire geographic range recognized for the complex. The lack of taxonomic resolution in the complex is a major conservation concern by preventing us from evaluating the potential threats and extinction risks of each of the lineages. Future research should follow the protocol of combining calls and DNA sequences associated with voucher specimens as a means to address the taxonomic status of genetic lineages within the A. simonstuarti complex.


Zootaxa ◽  
2019 ◽  
Vol 4590 (4) ◽  
pp. 457
Author(s):  
IRENE A. CARDOSO ◽  
GHENNIE T. RODRÍGUEZ-REY ◽  
MARIANA TEROSSI ◽  
CÁTIA BARTILOTTI ◽  
CRISTIANA S. SEREJO

Deep-sea shrimps of the species Plesionika acanthonotus (Smith, 1882) and P. holthuisi Crosnier & Forest, 1968 are morphologically similar and exhibit overlapping amphi-Atlantic distributions. In the literature, through morphological studies, there are reports of doubts about the validity of P. holthuisi and some authors believe that the eastern and western Atlantic populations of P. acanthonothus could represent two distinct species. The objective of the present study was to use molecular data to elucidate the taxonomic status of the two populations of P. acanthonothus. DNA sequences of two mitochondrial genes (16S rDNA and Cytochrome Oxidase subunit I) and a nuclear gene (Histone 3) were obtained for both species and for both populations of P. acanthonotus. The sequences were also obtained from Genbank for comparison. The trees (separate and multi-locus/partitioned genes) were generated by Bayesian Inference analyzes, and genetic divergence (Kimura-2-parameters) was also calculated. All specimens that had their DNA sequenced were examined morphologically to confirm their identification; morphological variations were noted. The genetic data showed that Plesionika holthuisi is closely related to P. acanthonotus, but clearly separated, indicating that P. holthuisi is a valid species. In the multi-locus analysis, the P. acanthonothus specimens were divided into two clades, one with the eastern Atlantic specimens and another with the western Atlantic specimens. However, this genetic separation was considered to be a population structuring for three reasons: (1) the genetic divergences of the two mitochondrial genes between these two groups (eastern Atlantic X western Atlantic) were smaller than the interspecific divergence for Plesionika; (2) the P. acanthonothus sequences of the Histone 3 gene showed no genetic variation; (3) in the analyzed individuals, no valid morphological character was found to support this separation. Thus, the conclusion of this study is that P. holthuisi probably is a valid species and P. acanthonothus presents two populations with mitochondrial divergences that could be in the process of speciation, but which currently represent only one species.


Sign in / Sign up

Export Citation Format

Share Document