scholarly journals Synthesis of Schiff Bases Compounds from Oxamic Hydrazide: Spectroscopic Characterization, X–ray Diffraction Structure and Antioxidant Activity Study

2021 ◽  
Vol 9 (1) ◽  
pp. 6
Author(s):  
Fatou Faye ◽  
Amadou Guèye ◽  
Papa Samba Camara ◽  
Aïssatou Alioune Gaye ◽  
Farba Bouyagui Tamboura ◽  
...  
Author(s):  
William F. Tivol ◽  
Murray Vernon King ◽  
D. F. Parsons

Feasibility of isomorphous substitution in electron diffraction is supported by a calculation of the mean alteration of the electron-diffraction structure factors for hemoglobin crystals caused by substituting two mercury atoms per molecule, following Green, Ingram & Perutz, but with allowance for the proportionality of f to Z3/4 for electron diffraction. This yields a mean net change in F of 12.5%, as contrasted with 22.8% for x-ray diffraction.Use of the hydration chamber in electron diffraction opens prospects for examining many proteins that yield only very thin crystals not suitable for x-ray diffraction. Examination in the wet state avoids treatments that could cause translocation of the heavy-atom labels or distortion of the crystal. Combined with low-fluence techniques, it enables study of the protein in a state as close to native as possible.We have undertaken a study of crystals of rat hemoglobin by electron diffraction in the wet state. Rat hemoglobin offers a certain advantage for hydration-chamber work over other hemoglobins in that it can be crystallized from distilled water instead of salt solutions.


2013 ◽  
Vol 6 (1) ◽  
pp. 308 ◽  
Author(s):  
Mikael Elias ◽  
Dorothee Liebschner ◽  
Jurgen Koepke ◽  
Claude Lecomte ◽  
Benoit Guillot ◽  
...  

2017 ◽  
Vol 74 (1) ◽  
pp. 108-112 ◽  
Author(s):  
Urszula Anna Budniak ◽  
Paulina Maria Dominiak

Isoguanine, an analogue of guanine, is of intrinsic interest as a noncanonical nucleobase. The crystal structure of isoguaninium chloride (systematic name: 6-amino-2-oxo-1H,7H-purin-3-ium chloride), C5H6N5O+·Cl−, has been determined by single-crystal X-ray diffraction. Structure analysis was supported by electrostatic interaction energy (E es) calculations based on charge density reconstructed with the UBDB databank. In the structure, two kinds of molecular tapes are observed, one parallel to (010) and the other parallel to (50\overline{4}). The tapes are formed by dimers of isoguaninium cations interacting with chloride anions. E es analysis indicates that cations in one kind of tape are oriented so as to minimize repulsive electrostatic interactions.


2017 ◽  
Vol 72 (8) ◽  
pp. 609-615
Author(s):  
Lukas Heletta ◽  
Stefan Seidel ◽  
Christopher Benndorf ◽  
Hellmut Eckert ◽  
Rainer Pöttgen

AbstractThe gallium-containing Heusler phases ScRh2Ga, ScPd2Ga, TmRh2Ga and LuRh2Ga have been synthesized by arc-melting of the elements followed by different annealing sequences to improve phase purity. The samples have been studied by powder X-ray diffraction. The structures of Lu0.97Rh2Ga1.03 (Fm3̅m, a=632.94(5) pm, wR2=0.0590, 46 F2 values, seven variables) and Sc0.88Rh2Ga1.12 (a=618.91(4) pm, wR2=0.0284, 44 F2 values, six variables) have been refined from single crystal X-ray diffractometer data. Both gallides show structural disorder through Lu/Ga and Sc/Ga mixing. Temperature dependent magnetic susceptibility measurements showed Pauli paramagnetism for ScRh2Ga, ScPd2Ga, and LuRh2Ga and Curie-Weiss paramagnetism for TmRh2Ga. 45Sc and 71Ga solid state MAS NMR spectroscopic investigations of the Sc containing compounds confirmed the site mixing effects typically observed for Heusler phases. The data indicate that the effect of mixed Sc/Ga occupancy is significantly stronger in ScRh2Ga than in ScPd2Ga.


Sign in / Sign up

Export Citation Format

Share Document