Effect of Endotoxin-induced Cell Injury on 70-kD Heat Shock Proteins in Bovine Lung Endothelial Cells

1990 ◽  
Vol 3 (3) ◽  
pp. 207-216 ◽  
Author(s):  
Jean E. Rinaldo ◽  
Michael Gorry ◽  
Robert Strieter ◽  
Hans Cowan ◽  
Rasul Abdolrasulnia ◽  
...  
2021 ◽  
Author(s):  
Ruben Bulkescher ◽  
Thomas Fleming ◽  
Claus Rodemer ◽  
Rebekka Medert ◽  
Marc Freichel ◽  
...  

Increased metabolic flux produces potentially harmful side-products, such as reactive dicarbonyl and oxygen species. The reactive dicarbonly methylglyoxal (MG) can impair oxidative capacity, which is downregulated in type 2 diabetes. Heat shock proteins (HSPs) of subfamily A (Hsp70s) promote ATP-dependent processing of damaged proteins during MG exposure which also involve mitochondrial proteins. Since the protection of mitochondrial proteins could promote higher production of reactive metabolites due to increased substrate flux, tight regulation of HspA-mediated protein handling is important. We hypothesized that stress-inducible HspAs (HspA1A/HspA1B) are pivotal for maintaining mitochondrial biogenesis during acute MG-stress. To analyze the role of stress-inducible HspA1A/HspA1B for maintenance of mitochondrial homeostasis during acute MG exposure, we knocked out HSPA1A/HSPA1B in mouse endothelial cells. HSPA1A/HSPA1B KO cells showed upregulation of the mitochondrial chaperones HspA9 (mitochondrial Hsp70/mortalin) and HspD1 (Hsp60) as well as induction of mitochondrial biogenesis upon MG exposure. Increased mitochondrial biogenesis was reflected by elevated mitochondrial branching, total count and area as well as by upregulation of mitochondrial proteins and corresponding transcription factors. Our findings suggest that mitochondrial HspA9 and HspD1 promote mitochondrial biogenesis during acute MG stress, which is counterregulated by HspA1A/HspA1B to prevent mitochondrial overstimulation and to maintain balanced oxidative capacity under metabolic stress conditions. These data support an important role of HSPs in MG-induced hormesis.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Earl G. Noble ◽  
Garry X. Shen

Heat shock proteins (Hsp) play critical roles in the body’s self-defense under a variety of stresses, including heat shock, oxidative stress, radiation, and wounds, through the regulation of folding and functions of relevant cellular proteins. Exercise increases the levels of Hsp through elevated temperature, hormones, calcium fluxes, reactive oxygen species (ROS), or mechanical deformation of tissues. Isotonic contractions and endurance- type activities tend to increase Hsp60 and Hsp70. Eccentric muscle contractions lead to phosphorylation and translocation of Hsp25/27. Exercise-induced transient increases of Hsp inhibit the generation of inflammatory mediators and vascular inflammation. Metabolic disorders (hyperglycemia and dyslipidemia) are associated with type 1 diabetes (an autoimmune disease), type 2 diabetes (the common type of diabetes usually associated with obesity), and atherosclerotic cardiovascular disease. Metabolic disorders activate HSF/Hsp pathway, which was associated with oxidative stress, increased generation of inflammatory mediators, vascular inflammation, and cell injury. Knock down of heat shock factor-1 (HSF1) reduced the activation of key inflammatory mediators in vascular cells. Accumulating lines of evidence suggest that the activation of HSF/Hsp induced by exercise or metabolic disorders may play a dual role in inflammation. The benefits of exercise on inflammation and metabolism depend on the type, intensity, and duration of physical activity.


1988 ◽  
Vol 106 (3) ◽  
pp. 893-904 ◽  
Author(s):  
N V Ketis ◽  
J Lawler ◽  
R L Hoover ◽  
M J Karnovsky

Heat-shock proteins from confluent primary cultures of bovine aortic endothelial cells were analyzed by SDS-polyacrylamide gels. In addition to the increased synthesis of the classical heat-shock proteins, there is an increase of a 180,000-mol wt polypeptide in the growth media of heat-shocked cells. Immunoprecipitation with specific antiserum indicates that the 180,000-mol wt polypeptide is thrombospondin. Assay of mRNA levels coding for thrombospondin after brief hyperthermic treatment (45 degrees C, 10 min), followed by a recovery of 2 h at 37 degrees C, results in a twofold increase in mRNA abundance. In contrast, the activation level of the 71,000-mol wt heat-shock protein mRNA occurs at an earlier time than for thrombospondin mRNA. Immunofluorescence microscopy was used to study the intracellular and extracellular distribution of thrombospondin. Thrombospondin is localized to a prominent pattern of granules of intracellular fluorescence in a perinuclear distribution in cells not exposed to heat. Upon heat treatment, the pattern of granules of intracellular fluorescence appears more pronounced, and the fluorescence appears to be clustered more about the nucleus. There are at least three pools of extracellular forms of thrombospondin: (a) the fine fibrillar extracellular matrix thrombospondin; (b) the punctate granular thrombospondin; and (c) the thrombospondin found in the conditioned medium not associated with the extracellular matrix. When bovine aortic endothelial cells are exposed to heat, the extracellular matrix staining of a fibrillar nature is noticeably decreased, with an increase in the number and degree of fluorescence of focal areas where the punctate granule thrombospondin structures are highly localized. No gross morphological changes in extracellular matrix staining of fibronectin was noted. However, the intermediate filament network was very sensitive and collapsed around the nucleus after heat shock. We conclude that the expression of thrombospondin is heat-shock stimulated.


Urology ◽  
2007 ◽  
Vol 70 (3) ◽  
pp. 63
Author(s):  
P. Pyo ◽  
M. Hoffman ◽  
R. Simon ◽  
H. Tazaki ◽  
M. Choudhury ◽  
...  

2006 ◽  
Vol 2 (3) ◽  
pp. 149-156 ◽  
Author(s):  
Michael Riordan ◽  
Rajasree Sreedharan ◽  
Michael Kashgarian ◽  
Norman J Siegel

Sign in / Sign up

Export Citation Format

Share Document