scholarly journals P311 Promotes Lung Fibrosis via Stimulation of Transforming Growth Factor-β1, -β2, and -β3 Translation

2019 ◽  
Vol 60 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Fang-Fang Duan ◽  
Gabriel Barron ◽  
Angelo Meliton ◽  
Gokhan M. Mutlu ◽  
Nickolai O. Dulin ◽  
...  
2019 ◽  
Vol 294 (43) ◽  
pp. 15781-15794 ◽  
Author(s):  
Junsuk Ko ◽  
Tingting Mills ◽  
Jingjing Huang ◽  
Ning-yuan Chen ◽  
Tinne C. J. Mertens ◽  
...  

2013 ◽  
Vol 288 (38) ◽  
pp. 27159-27171 ◽  
Author(s):  
Meenakshi Maitra ◽  
Moushumi Dey ◽  
Wen-Cheng Yuan ◽  
Peter W. Nathanielsz ◽  
Christine Kim Garcia

Missense mutations of surfactant proteins are recognized as important causes of inherited lung fibrosis. Here, we study rare and common surfactant protein (SP)-A1 and SP-C variants, either discovered in our familial pulmonary fibrosis cohort or described by others. We show that expression of two SP-A1 (R219W and R242*) and three SP-C (I73T, M71V, and L188Q) variant proteins lead to the secretion of the profibrotic latent transforming growth factor (TGF)-β1 in lung epithelial cell lines. The secreted TGF-β1 is capable of autocrine and paracrine signaling and is dependent upon expression of the latent TGF-β1 binding proteins. The dependence upon unfolded protein response (UPR) mediators for TGF-β1 induction differs for each variant. TGF-β1 secretion induced by the expression of the common SP-A1 R219W variant is nearly completely blocked by silencing the UPR transducers IRE-1α and ATF6. In contrast, the secretion of TGF-β1 induced by two rare SP-C mutant proteins (I73T and M71V), is largely unaffected by UPR silencing or by the addition of the small molecular chaperone 4-phenylbutyric acid, implicating a UPR-independent mechanism for these variants. Blocking TGF-β1 secretion reverses cell death of RLE-6TN cells expressing these SP-A1 and SP-C variants suggesting that anti-TGF-β therapeutics may be beneficial to this molecularly defined subgroup of pulmonary fibrosis patients.


ACS Nano ◽  
2017 ◽  
Vol 11 (2) ◽  
pp. 1659-1672 ◽  
Author(s):  
Zhenzhen Wang ◽  
Chunming Wang ◽  
Shang Liu ◽  
Wei He ◽  
Lintao Wang ◽  
...  

2015 ◽  
Vol 36 (3) ◽  
pp. 937-946 ◽  
Author(s):  
Xingqi Deng ◽  
Kun Jin ◽  
Yanyan Li ◽  
Wei Gu ◽  
Mei Liu ◽  
...  

Background/Aims: Severe acute lung injury (ALI) often develops into acute respiratory distress syndrome (ARDS). Previous studies have shown that platelet-derived growth factor (PDGF) and transforming growth factor β1 (TGFβ1) participate in the pathogenesis of ARDS by stimulation of fibroblast proliferation, leading to the development of pulmonary fibrosis. However, the exact pathways downstream of PDGF and TGFβ receptor signaling have not been completely elucidated. Method: We treated human lung fibroblasts (HLF) with PDGF, or TGFβ1, or combined, and examined the activation of p38 MAPK, p42/p44 MAPK and SMAD3. We used a specific inhibitor PD98059 to antagonize phosphorylation of p42/p44 MAPK, or used a specific inhibitor SN203580 to antagonize phosphorylation of p38 MAPK, or used a specific inhibitor SIS3 to antagonize phosphorylation of SMAD3. We then examined the effects of these inhibitors on the activation of collagen I and α-smooth muscle actin (α-SMA) induced by PDGF or TGFβ1 stimulation. Results: PDGF activated p38 MAPK and p42/p44 MAPK, but not SMAD3 in HLF cells. TGFβ1 activated p38 MAPK and SMAD3, but not p42/p44 MAPK in HLF cells. Activation of p38 MAPK by either PDGF or TGFβ1 induced α-SMA but not collagen I in HLF cells, while activation of p42/p44 MAPK by PDGF induced collagen I but not α-SMA in HLF cells. Activation of SMAD3 by TGFβ1 did not affect either collagen I or α-SMA in HLF cells. Conclusion: PDGF and TGFβ1 regulate ARDS-associated lung fibrosis through distinct signaling pathway-mediated activation of fibrosis-related proteins. Treatments with both PDGF and TGFβ1 antagonists may result in a better anti-fibrotic outcome for ALI-induced lung fibrosis.


Sign in / Sign up

Export Citation Format

Share Document