Influence of Thermal Annealing on Structural and Optical Properties of Sb Doped ZnTe Thin Film

2020 ◽  
Vol 12 (1) ◽  
pp. 100-104 ◽  
Author(s):  
Neha Pandey ◽  
Brijesh Kumar ◽  
D. K. Dwivedi

Paper presents the influence of thermal treatment on structural and optical characteristics of Sb0.5ZnTe thin film. Alloy of Sb0.5ZnTe has been prepared through traditional and economical melt quenching technique and thin films of prepared alloy was deposited onto glass substrate by thermal evaporation method at pressure of 10–6 Torr. The antimony doped films were annealed for 2 h at three different temperatures ranges (373 K, 393 K and 413 K). Structural characterization of as prepared and annealed film was done by XRD technique and it was found that annealing improves the film crystal structure. UV-Vis spectrophotometer facilitates optical analysis of Sb0.5ZnTe film in wavelength range of 400–1000 nm. It was observed that band gap Eg of the Sb doped film increased while absorption coefficient (α) decrease with increase in heating temperature. These changes in optical properties were explained in terms of defect states.

Author(s):  
M. Kamruzzaman ◽  
Chaoping Liu ◽  
A.K.M. Farid Ul Islam ◽  
J.A. Zapien

The thin film of Sb2Se3 was deposited by thermal evaporation method and the film was annealed in N2 flow in a three zone furnace at a temperature of 290oC for 30 min. The structural properties were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy, respectively. It is seen that the as-deposited film is amorphous and the annealed film is polycrystalline in nature. The surface of Sb2Se3 film is oxidized with a thickness of 1.15 nm investigated by X-ray photolecetron spectroscopy (XPS) measurement. Spectroscopic ellipsometry (SE) and UV-vis spectroscopy measurements were carried out to study the optical properties of Sb2Se3 film. In addition, the first principles calculations were applied to study the electronic and optical properties of Sb2Se3. From the theoretical calculation it is seen that Sb2Se3 is intrinsically an indirect band gap semiconductor. Importantly, the experimental band gap is in good agreement with the theoretical band gap. Furthermore, the experimental values of n,k,varepsilon1, and varepsilon2 are much closer to the theoretical results. However, the obtained large dielectric constants and refractive index values suggest that exciton binding energy in Sb2Se3 should be relatively small and an antireflective coating is recommended to enhance the light absorption of Sb2Se3 for thin film solar cells application. DOI: 10.21883/FTP.2017.12.45184.8396


2015 ◽  
Vol 44 (3) ◽  
pp. 233-239 ◽  
Author(s):  
Hale Tugral ◽  
Nilgun Baydogan ◽  
Huseyin Cimenoglu
Keyword(s):  

Author(s):  
Subhananda Chakrabarti ◽  
Md Jawaid Alam ◽  
Punam Murkute ◽  
Sushama Sushama ◽  
Hemant Ghadi

2006 ◽  
Vol 951 ◽  
Author(s):  
Huihua Shu ◽  
Jiehui Wan ◽  
John Shu ◽  
Hong Yang ◽  
Bryan A. Chin

ABSTRACTA passive chemiresistor micro-sensor was investigated for the detection of hydrazine compounds. Hydrazine compounds are a highly toxic and carcinogenic species exhibiting toxic effects in humans at very low levels of exposure. Therefore, a sensor capable of detecting ppb levels of hydrazine compounds is required to insure the safety of personnel. The present study describes the fabrication, testing, and characterization of a low-cost, ultrasensitive Poly (3-Hexylthiophene) (P3HT) thin film-based micro-sensor for the detection of hydrazine compounds. Standard microelectronic manufacturing techniques were used to form a micro-sensor composed of a silicon substrate, interdigitated gold electrodes, and P3HT sensing film. Responses of the micro-sensor to hydrazine compounds at different temperatures and concentration levels are reported. When exposed to 25 ppm hydrazine in nitrogen, the sensor's resistance was measured to change from a few ohms to over 10 Megaohms. The thermal stability of the P3HT micro-sensor and the method to improve thermal stability are also explored. Thermally annealing the P3HT micro-sensor was found to improve thermal stability at high temperatures. Moreover, the sensor exhibits good specificity to hydrazine and does not respond to the presence of NO2 and/or N2O.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 645 ◽  
Author(s):  
Thao ◽  
Kuo ◽  
Tuan ◽  
Tuan ◽  
Vu ◽  
...  

Ge0.07GaN films were successfully made on Si (100), SiO2/Si (100) substrates by a radio frequency reactive sputtering technique at various deposition conditions listed as a range of 100–400 °C and 90–150 W with a single ceramic target containing 7 at % dopant Ge. The results showed that different RF sputtering power and heating temperature conditions affected the structural, electrical and optical properties of the sputtered Ge0.07GaN films. The as-deposited Ge0.07GaN films had an structural polycrystalline. The GeGaN films had a distorted structure under different growth conditions. The deposited-150 W Ge0.07GaN film exhibited the lowest photoenergy of 2.96 eV, the highest electron concentration of 5.50 × 1019 cm−3, a carrier conductivity of 35.2 S∙cm−1 and mobility of 4 cm2·V−1∙s−1.


1992 ◽  
Vol 277 ◽  
Author(s):  
E. F. Aust ◽  
W. Hickel ◽  
W. H. Meyer ◽  
H. Ringsdorf ◽  
M. Sawodny ◽  
...  

ABSTRACTThis paper deals with the application of some recently developed evanescent waveoptical techniques for the characterization of novel macromolecular host-guest systems. In particular, surface plasmon- and guided optical wave-spectroscopies and -microscopies are used to determine the linear and nonlinear optical properties of these materials in thin film form.


Sign in / Sign up

Export Citation Format

Share Document