Rh-Based Catalysts for Dry Reforming of Methane: Effect of Promoter on Aluminum Oxide Support

2017 ◽  
Vol 23 (6) ◽  
pp. 5889-5891
Author(s):  
Gabriella Mancino ◽  
Luciana Lisi ◽  
Stefano Cimino
Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3365
Author(s):  
Yuliya Bespalko ◽  
Ekaterina Smal ◽  
Mikhail Simonov ◽  
Konstantin Valeev ◽  
Valeria Fedorova ◽  
...  

To achieve a high activity and coking stability of nickel catalysts in dry reforming of methane, materials comprised of ceria–zirconia doped by Ti were investigated as supports. Ceria–zirconia supports doped with titanium were prepared either via the Pechini method or by synthesis in supercritical alcohol media. Ni-containing catalysts were prepared by two techniques: standard incipient wetness impregnation and one-pot synthesis. The catalytic reaction of DRM to synthesis gas was carried out in the 600–750 °C range over 5% wt. Ni/Ce(Ti)ZrO2. Dried and calcined supports and catalysts were characterized by physicochemical methods including N2 adsorption, XRD, Raman, H2-TPR, and HRTEM. Both preparation methods led to formation of solid solution with cubic fluorite-like structure, as well as after addition of Ti. Introduction of Ti should provide improved oxygen storage capacity and mobility of support oxygen. The highest activity was observed with the catalyst of 5% wt. Ni/Ce0.75Ti0.2Zr0.05O2−δ composition due to optimized oxide support structure and support oxygen mobility.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 741
Author(s):  
Alfonso J. Carrillo ◽  
José Manuel Serra

Exsolution is emerging as a promising route for the creation of nanoparticles that remain anchored to the oxide support, imparting remarkable stability in high temperature chemical processes such as dry reforming of methane. This process takes place at temperatures around 850 °C, which causes sintering-related issues in catalysts prepared using conventional impregnation methods, which could be overcome by using exsolution functionalized oxides. In this work, FeNi3 alloy nanoparticles exsolved from Sr2FexNi1-xMoO6-δ double-layered perovskites were evaluated as a dry reforming catalyst, paying special attention to structure–activity relationships. Our results indicate that increasing the Ni content favors the nanoparticle dispersion, eventually leading to increased CO2 and CH4 conversions. The exsolved nanoparticles presented remarkable nanoparticle size (ca. 30 nm) stability after the 10 h treatment, although the formation of some phase segregations over the course of the reaction caused a minor decrease in the nanoparticle population. Overall, the results presented here serve as materials processing guidelines that could find further potential use in the design of more efficient (electro)catalysts in other fuel production or energy conversion technologies.


ACS Catalysis ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 3550-3560 ◽  
Author(s):  
Feng Zhang ◽  
Zongyuan Liu ◽  
Shuhao Zhang ◽  
Nusnin Akter ◽  
Robert M. Palomino ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Oscar Daoura ◽  
◽  
Maya Boutros ◽  
Franck Launay ◽  

CO2 reforming of CH4, also referred to as the Dry Reforming of Methane (DRM), is considered an excellent method to produce H2 and CO (syngas), which are known to be used for the production of higher alkanes and oxygenates. Despite nickel’s moderate toxicity, Ni-based heterogeneous catalysts are considered excellent candidates for use in DRM due to their reasonable performances and economic advantages. However, these materials also present severe drawbacks, such as sintering of the active phase and coke (carbon) deposition, which may, in certain cases, lead to severe catalyst deactivation. Several synthesis strategies, mostly based on the stabilization of nickel through oxide support, have been developed to overcome these issues. Silica-based materials are investigated widely due to their availability, high surface area, and the confinement capacity conferred by their controlled porosity. The present review summarizes the progress in the design of Ni/silica-based catalysts for the dry reforming of methane between the years 2015 and 2018. The different strategies implemented are discussed to assist future research works in designing the anti-coking and anti-sintering nickel-silica-based catalysts.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2412
Author(s):  
Ahmed Abasaeed ◽  
Samsudeen Kasim ◽  
Wasim Khan ◽  
Mahmud Sofiu ◽  
Ahmed Ibrahim ◽  
...  

Development of a transition metal based catalyst aiming at concomitant high activity and stability attributed to distinguished catalytic characteristics is considered as the bottleneck for dry reforming of methane (DRM). This work highlights the role of modifying zirconia (ZrO2) and alumina (Al2O3) supported nickel based catalysts using lanthanum oxide (La2O3) varying from 0 to 20 wt% during dry reforming of methane. The mesoporous catalysts with improved BET surface areas, improved dispersion, relatively lower reduction temperatures and enhanced surface basicity are identified after La2O3 doping. These factors have influenced the catalytic activity and higher hydrogen yields are found for La2O3 modified catalysts as compared to base catalysts (5 wt% Ni-ZrO2 and 5 wt% Ni-Al2O3). Post-reaction characterizations such as TGA have showed less coke formation over La2O3 modified samples. Raman spectra indicates decreased graphitization for La2O3 catalysts. The 5Ni-10La2O3-ZrO2 catalyst produced 80% hydrogen yields, 25% more than that of 5Ni-ZrO2. 5Ni-15La2O3-Al2O3 gave 84% hydrogen yields, 8% higher than that of 5Ni-Al2O3. Higher CO2 activity improved the surface carbon oxidation rate. From the study, the extent of La2O3 loading is dependent on the type of oxide support.


2019 ◽  
Vol 59 (11) ◽  
pp. 1256-1263
Author(s):  
R. R. Grigoryan ◽  
S. G. Aloyan ◽  
V. R. Harutyunyan ◽  
S. D. Arsentev ◽  
L. A. Tavadyan

2021 ◽  
Vol 44 ◽  
pp. 101411
Author(s):  
Nicolas Abdel Karim Aramouni ◽  
Joseph Zeaiter ◽  
Witold Kwapinski ◽  
James J. Leahy ◽  
Mohammad N. Ahmad

Sign in / Sign up

Export Citation Format

Share Document