Exosomes Derived from Bone Marrow Mesenchymal Stem Cells (BMSC) Inhibit Apoptosis Factors Caspase-3 and Caspase-9 to Promote the Repair of Cardiomyocytes

2021 ◽  
Vol 11 (10) ◽  
pp. 1990-1995
Author(s):  
Meijiao Du ◽  
Zhengmei Wang ◽  
Geng Su ◽  
Yunxia Zhou ◽  
Chuan Luo

This study assesses the effect of exosomes derived from bone marrow mesenchymal stem cells (MSCs) on cardiomyocytes by inhibiting the apoptotic factors Caspase-3 and Caspase-9. Cell purity was evaluated under a microscope and exosomes were obtained by ultracentrifugation from the culture supernatant of BMSCs. Tunable resistive pulse sensing (TRPS) method analyzed the concentration distribution of exosomes particle size, and specific surface antigens were examined by flow cytometry. Exosomes were used to process cardiomyocytes to detect cardiomyocyte repair. After plasmid interference technology, the effect of exosomes on caspase-3 and caspase-9 expression was detected by western blot. The activity of cardiomyocytes was analyzed by CCK-8. Exosomes can promote the viability of cardiomyocytes. The mRNA and protein levels of GLUT3 in cardiomyocytes were significantly increased. Exosomes can inhibit cardiomyocyte apoptosis by down-regulating the expression of apoptosis-related proteins. Exosomes can improve the function and promote the repair of myocardium by inhibiting the expression of apoptotic factors Caspase-3 and Caspase-9.

2020 ◽  
Vol 10 (6) ◽  
pp. 868-873
Author(s):  
Shengxiang Huang ◽  
Haibo Mei ◽  
Rongguo He ◽  
Kun Liu ◽  
Jin Tang ◽  
...  

The α-calcitonin gene-related peptide (α-CGRP) regulates bone metabolism and has potential applications in enhancing bone remodeling in vivo. However, α-CGRP's role in bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation remain unclear. Rat BMSCs were separated into control group, α-CGRP group and α-CGRP siRNA group, in which BMSCs were transfected with α-CGRP plasmid and α-CGRP siRNA respectively followed by analysis of α-CGRP level by real time PCR and ELISA, cell proliferation by MTT assay, Caspase 3 activity, ALP activity, formation of calcified nodules by alizarin red staining, Smad1 and Smad7 level by Western blot and Runx2 by real time PCR. αCGRP transfection into BMSCs significantly up-regulated CGRP, which could promote cell proliferation, inhibit Caspase 3 activity, promote ALP activity, increase calcified nodules formation and upregulate Smad1, Smad7 and Runx2 compared to control (P < 0.05); transfection of αCGRP siRNA significantly down-regulated CGRP in BMSCs, inhibited cell proliferation, promoted Caspase 3 activity, inhibited ALP activity, inhibited calcified nodules formation and downregulate Smad1, Smad7 and Runx2 (P < 0.05). αCGRP overexpression promotes the Smad/Runx2 signaling, which in turn promotes BMSCs proliferation and osteogenesis. Decreased αCGRP level inhibits Smad/Runx2 signaling, promotes BMSCs apoptosis, inhibits proliferation and osteogenic differentiation.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Meng Yang ◽  
Xin Yan ◽  
Fu-Zhen Yuan ◽  
Jing Ye ◽  
Ming-Ze Du ◽  
...  

Cartilage injury of the knee joint is very common. Due to the limited self-healing ability of articular cartilage, osteoarthritis is very likely to occur if left untreated. Bone marrow mesenchymal stem cells (BMMSCs) are widely used in the study of cartilage injury due to their low immunity and good amplification ability, but they still have disadvantages, such as heterogeneous undifferentiated cells. MicroRNAs can regulate the chondrogenic differentiation ability of MSCs by inhibiting or promoting mRNA translation and degradation. In this research, we primarily investigated the effect of microRNA-210-3p (miR-210-3p) on chondrogenic and adipogenic differentiation of BMMSCs in vitro. Our results demonstrate that miR-210-3p promoted chondrogenic differentiation and inhibited adipogenic differentiation of rat BMMSCs, which was related to the HIF-3α signalling pathway. Additionally, miR-210-3p promotes mRNA and protein levels of the chondrogenic expression genes COLII and SOX9 and inhibits mRNA and protein levels of the adipogenic expression genes PPARγ and LPL. Thus, miR-210-3p combined with BMMSCs is a candidate for future clinical applications in cartilage regeneration and could represent a promising new therapeutic target for OA.


2019 ◽  
Vol 47 (7) ◽  
pp. 3282-3298
Author(s):  
Min Zhu ◽  
Yu Hua ◽  
Jian Tang ◽  
Xiaoke Zhao ◽  
Ling Zhang ◽  
...  

Objective To determine the effect of the upregulation or knockdown of the ephrinB2 ( Efnb2) gene and the effect of EphB4/EphrinB2 signalling in rat bone marrow mesenchymal stem cells (BMSCs). Methods Rat BMSCs were infected with lentivirus vectors carrying EphrinB2 and shRNA-EphrinB2. EphrinB2 mRNA and protein levels were quantified. At 28 days of culture with neuronal cell-conditioned differentiation medium, levels of microtubule-associated protein 2 (MAP2), CD133 and nestin were detected in EphrinB2/BMSCs and shEphrinB2/BMSCs using quantitative polymerase chain reaction and immunofluorescence. The ability of these cells to migrate was evaluated using a transwell assay. Results BMSCs were successfully isolated as indicated by their CD90+ CD29+ CD34– CD45– phenotype. Three days after ephrinB2 transduction, BMSC cell bodies began to shrink and differentiate into neuron-like cells. At 28 days, levels of MAP2, CD133 and nestin, as well as the number of migratory cells, were higher in lenti-EphrinB2-BMSCs than in the two control groups. The shEphrinB2/BMSCs had reduced levels of MAP2, CD133 and nestin; and a lower rate of cell migration. Similarly, increased levels of Grb4 andp21-activated kinase in the EphB4/EphrinB2 reverse signalling pathway were observed by Western blot. Conclusions LV-EphrinB2 can be efficiently transduced into BMSCs, which then differentiate into neuron-like cells.


2019 ◽  
Vol 9 (11) ◽  
pp. 1583-1588
Author(s):  
Shaoting Li ◽  
Jinhe Zhou ◽  
Zhiqing Ye ◽  
Shenglin Wu

Bone marrow mesenchymal stem cells (BMSCs) can be multi-directionally differentiated and are widely used in tissue engineering. 25-hydroxycholesterol (25-HC) can induce osteogenesis and is involved in osteogenic formation. However, the role of 25-hydroxycholesterol in BMSCs is unclear. Rat BMSCs were isolated and divided into control group and 25-HC treatment (2 and 4 μM) group. Cell proliferation was detected by MTT assay. Caspase-3 and ALP activity was analyzed. Real time PCR was done to analyze Runx2, OPN, FABP4 and PPARγ2 expression. Red staining detects the calcified nodule formation. Wnt5 level was detected by western blot and TGF-β secretion was analyzed by ELISA. 25-HC treatment significantly inhibited cell proliferation, increased Caspase 3 activity, decreased ALP activity and the expression of Runx2 and OPN, increased expression of FABP4 and PPARγ2, decreased formation of calcified nodules, secretion of TGF-β and reduced expression of Wnt5 compared to control group (P < 0.05), and the above changes were significant with the increase of the concentration of 25-HC (P < 0.05). 25-hydroxycholesterol regulates the proliferation and apoptosis of BMSCs by regulating Wnt5/TGF-β signaling pathway, inhibiting the differentiation of BMSCs into osteogenic direction and promoting its adipogenic differentiation.


2019 ◽  
Vol 9 (9) ◽  
pp. 1266-1272
Author(s):  
Yonggang Zhang ◽  
Junqi Wang ◽  
Junqi Yang ◽  
Peng Liu ◽  
Kunzheng Wang ◽  
...  

Bone marrow mesenchymal stem cells (BMSCs) can differentiate into osteogenesis. Integrin-linked kinase (ILK) regulates several biological processes. However, whether ILK affects metabolic syndrome (MS)-derived BMSCs differentiation remains unclear. SD rats were divided into control group and MS group. Diabetic rat model was prepared. BMSCs were divided into control group, MS group and ILK group, in which ILK plasmid was transfected into BMSCs from MS group followed by analysis of ILK, Bcl-2, Bax, RUNX2 and OPN expression by real time PCR, BMSCs proliferation by MTT assay, BMSCs apoptosis, expression of Beclin-3 and LC-3 by Western blot as well as secretion of IL-1β and IL-6 by ELISA. MS group showed significantly reduced BMSCs proliferation, elevated Caspase 3 activity, downregulated Bcl-2, RUNX2 and OPN expression, upregulated Bax level and increased IL-1β and IL-6 secretion as well as decreased Beclin-3 and LC-3 expression compared to control group (P < 0.05). BMSCs with ILK overexpression in high glucose presented significantly promoted BMSCs proliferation, decreased Caspase 3 activity, increased Bcl-2, RUNX2 and OPN expression, decreased Bax expression and IL-1β and IL-6 secretion as well as reduced Beclin-3 and LC-3 expression compared to MS group (P < 0.05). ILK expression in MS-derived BMSCs is decreased. ILK overexpression in BMSCs can promote autophagy, inhibit apoptosis and inflammation, and promote their differentiation into osteoblasts.


2021 ◽  
Author(s):  
Yifan Yang ◽  
Jing Xu ◽  
Qingxin Su ◽  
Yiran Wu ◽  
Qizheng Li ◽  
...  

Abstract BackgroundIdiopathic scoliosis (IS) is the most common structural scoliosis, which seriously affects not only patient’s physical and mental health but also quality of patient’s life. Abnormal osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is one of the causes of IS. However, the regulation mechanism of osteogenic differentiation of BMSCs in patients with IS remains to be further studied.MethodsSerum samples of 135 patients with IS were collected, and the expression of miRNA were detected by RT-qPCR. BMSCs from patients with IS were collected and the expression of miR-192-5p in BMSCs from IS patients and normal BMSCs was detected by RT-qPCR. Double luciferase reporter genes assay was used to verify the targeting relationship between miR-192-5p and RSPO1. The levels of RSPO1, osteogenic related proteins (OC, OPN and RUNX2) and Wnt/β-catenin signaling pathway related proteins (WNT3A and β-catenin) were detected by Western blotting. Alkaline phosphatase staining and alizarin red staining were used to evaluate the osteogenesis of BMSCs.ResultsmiR-192-5p was significantly up-regulated in serum and BMSCs of patients with IS. Alkaline phosphatase staining and alizarin red staining showed that miR-192-5p inhibitor promoted the osteogenic differentiation of BMSCs from IS patients. miR-192-5p targeted down-regulated the expression of RSPO1 in BMSCs from IS patients. In addition, overexpression of RSPO1 activated Wnt/β-catenin signaling pathway in BMSCs from IS patients. Furthermore, miR-192-5p/RSPO1 axis regulated levels of osteogenic related proteins (OC, OPN and RUNX2) in BMSCs from IS patients through Wnt/β-catenin signaling pathway, and affected the osteogenic differentiation of BMSCs.ConclusionmiR-192-5p, which was highly expressed in patients with IS, inhibited Wnt/β-catenin signaling pathway by down-regulating RSPO1 protein and then reduced the osteogenic differentiation ability of BMSCs.


2021 ◽  
Vol 11 (4) ◽  
pp. 749-755
Author(s):  
Chi Zhang ◽  
Yuanhe Wang ◽  
Kang Sun ◽  
Dingzhu Yu ◽  
Shaoqi Tian

Human bone marrow mesenchymal stem cells (BMSCs) differentiation into special cell types is affected by inflammation. Melatonin has various effects such as anti-oxidation and immune regulation. However, melatonin’s effect on BMSCs osteogenic differentiation during inflammation has not been elucidated. Rat BMSCs were isolated and assigned into control group, inflammation group (1 μg/ml lipopolysaccharide, LPS) and melatonin group (100 μM melatonin was added to LPSstimulated BMSCs cells) followed by analysis of BMSCs proliferation by MTT assay, Caspase 3 and ALP activity, expression of Runx2 and OP by Real time PCR, ROS content and SOD activity, TNF-α and IL-1β secretion by ELISA and mTOR/PI3K/AKT signaling protein level by Western blot. LPS action on BMSCs significantly inhibits BMSCs proliferation, promotes Caspase 3 activity, inhibits ALP activity, decreases Runx2 and OP expression and SOD activity, increases ROS content and TNF-α and IL-1β secretion as well as reduced mTOR and p-PI3K level (P <0.05). Melatonin addition significantly reversed the above changes (P <0.05). Melatonin can regulate oxidative stress, inhibit inflammation, and promote BMSCs proliferation and osteogenic differentiation in inflammatory environment by activating mTOR/PI3K/AKT signaling pathway.


2019 ◽  
Vol 9 (11) ◽  
pp. 1589-1594
Author(s):  
Xu Tong ◽  
Renjian Zheng ◽  
Linjing Shu

Bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation plays an important role in Osteoporosis (OP). LncRNA DGCR5 participates in OP development. However, LncRNA DGCR5's effect on BMSCs in osteoporosis rats and related mechanisms have not been elucidated. SD rats were divided into control group and OP group. Rat BMSCs were cultured and transfected with LncRNA DGCR5 siRNA followed by analysis of LncRNA DGCR5 expression by Real time PCR, cell proliferation by MTT assay, Caspase 3 activity, of ERK/P38 signaling pathway protein expression by Western blot, ALP activity, and the osteogenic genes Runx2 and OC expression by Real time PCR. LncRNA DGCR51 expression was increased in BMSCs of OP rats. Compared with control group, cell proliferation was significantly inhibited, Caspase 3 activity was increased, p-ERK1/2 and p-P38 were downregulated, ALP activity, Runx2 and OC expression was decreased (P < 0.05). DGCR51 siRNA transfection into OP rat BMSCs significantly reduced DGCR51 expression, promoted cell proliferation, decreased Caspase 3 activity, increased p-ERK1/2 and p-P38 expression, increased ALP activity, Runx2 and OC expression compared to OP group (P < 0.05). LncRNA DGCR51 expression is increased in OP rat BMSCs. Down-regulation of LncRNA DGCR51 promoted the activation of ERK/P38 signaling pathway, thereby inhibiting the apoptosis of BMSCs and promoting proliferation and osteogenic differentiation of BMSC in OP rats.


Sign in / Sign up

Export Citation Format

Share Document