Stromal Cell-Derived Factor-1α (SDF-1α) Promotes Growth and Migration of Bone Marrow Stromal Cells (BMSCs) and Gastric Cancer Cells Through Phosphatidylinositol 3-Kinase/AKT (PI3K/Akt) Pathway

2022 ◽  
Vol 12 (2) ◽  
pp. 393-398
Author(s):  
Ming Yan ◽  
Ringxing Bai ◽  
Hongyi Zhang ◽  
Wenmao Yan

SDF-1α activity is closely related to information transmission and cell migration when contributing to lymphatic metastasis in various tumors. Herein, we explored the interaction among SDF-1α, CXCR4 and PI3K/Akt signaling pathway in gastric cancer (GC) and their roles in this disorder. Human GC cells KATO-III and BMSCs were co-cultured without contact. GC cells were transfected with SDF-1α, CXCR4 inhibitor, and PI3K inhibitor. After examining the efficiency of transfection, cell migration was evaluated using Transwell chamber, and expression SDF-1α, CD133, and CXCR4 was determined by RT-qPCR. With transfection rate of 98%, the number of migrated cells reduced upon inhibition of CXCR4 and PI3K. Luciferase activity in 565 nm are high than CXCR4 inhibition group. (p < 0.05). Likewise, up-regulation of SDF-1α increased the expression of SDF-1 (0.825±0.061), CD133 (0.875±0.058), CXCR4 (0.801±0.052), and Akt (0.852±0.062), compared to the blank group, CXCR4 inhibition group and PI3K inhibition group (p < 0.05). Down-regulation of CXCR4 and PI3K, however, decreased the expression insignificantly (p > 0.05). Collectively, up-regulation of SDF-1α activates CXCR4 signaling pathway of BMSCs and stimulates its downstream PI3K/Akt signaling pathway and and increases the expression of CD133, thereby promoting malignant behaviors of GC cells.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Linwen Zhu ◽  
Zhe Li ◽  
Xiuchong Yu ◽  
Yao Ruan ◽  
Yijing Shen ◽  
...  

Abstract Background Recently, tRNA-derived fragments (tRFs) have been shown to serve important biological functions. However, the role of tRFs in gastric cancer has not been fully elucidated. This study aimed to identify the tumor suppressor role of tRF-5026a (tRF-18-79MP9P04) in gastric cancer. Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was first used to detect tRF-5026a expression levels in gastric cancer tissues and patient plasma. Next, the relationship between tRF-5026a levels and clinicopathological features in gastric cancer patients was assessed. Cell lines with varying tRF-5026a levels were assessed by measuring tRF-5026a using qRT-PCR. After transfecting cell lines with a tRF-5026a mimic or inhibitor, cell proliferation, colony formation, migration, apoptosis, and cell cycle were evaluated. The expression levels of related proteins in the PTEN/PI3K/AKT pathway were also analyzed by Western blotting. Finally, the effect of tRF-5026a on tumor growth was tested using subcutaneous tumor models in nude mice. Results tRF-5026a was downregulated in gastric cancer patient tissues and plasma samples. tRF-5026a levels were closely related to tumor size, had a certain diagnostic value, and could be used to predict overall survival. tRF-5026a was also downregulated in gastric cancer cell lines. tRF-5026a inhibited the proliferation, migration, and cell cycle progression of gastric cancer cells by regulating the PTEN/PI3K/AKT signaling pathway. Animal experiments showed that upregulation of tRF-5026a effectively inhibited tumor growth. Conclusions tRF-5026a (tRF-18-79MP9P04) is a promising biomarker for gastric cancer diagnostics and has tumor suppressor effects mediated through the PTEN/PI3K/AKT signaling pathway.


Author(s):  
Yizhuo LU ◽  
Lianghui LI ◽  
Guoyang WU ◽  
Huiqin ZHUO ◽  
Guoyan LIU ◽  
...  

Background: We aimed to investigate the effect of PI3K/Akt signaling pathway on PRAS40Thr246 phosphorylation in gastric cancer cells. Methods: The study was conducted from April 2017 to January 2018 in Zhongshan Hospital, Xiamen University, Xiamen, China. Gastric cancer cells were divided into three groups: gastric cancer cell group, LY294002 group and MK-2206 group. Specific tests were conducted accordingly. Results: Inhibition of PI3K/Akt signaling pathway activation and PRAS40Thr246 phosphorylation could inhibit proliferation and invasion and promote apoptosis of gastric cancer cells, and PRAS40Thr246 phosphorylation could activate PI3K/Akt signaling pathway. Conclusion: The levels of PI3K/Akt signaling pathway related proteins and p-PRAS40Thr246 were significantly increased in gastric cancer cells. p-PRAS40-Thr246 was able to reflect the activation of the PI3K/Akt signaling pathway, reflecting the sensitivity of the PI3K/AKT signaling pathway to inhibitors.


2020 ◽  
Vol Volume 13 ◽  
pp. 10995-11006
Author(s):  
Ya-Nan Sheng ◽  
Ying-Hua Luo ◽  
Shao-Bin Liu ◽  
Wan-Ting Xu ◽  
Yu Zhang ◽  
...  

2020 ◽  
Vol 19 ◽  
pp. 153303382091595 ◽  
Author(s):  
Yong Zhu ◽  
Feng Shi ◽  
Meng Wang ◽  
Jian Ding

Rabs have been reported to be involved in the carcinogenesis process and in the progression of cancer. However, it is unclear whether or not Rab9 is associated with the development of cancer. In the present study, we aimed to investigate the role of Rab9 in the biological functions of gastric cancer cells. The gastric cancer cell lines AGS and MKN45 were transfected with siRNA-Rab9 to block the expression of Rab9. The cell viability, proliferation, migration, invasion, and apoptosis were examined using Cell Count Kit-8, colony formation, wound healing, Transwell, and flow cytometry assays, respectively. Our data showed that silencing of Rab9 significantly inhibited the viability, proliferation, migration, and invasion abilities of AGS and MKN45 cells. Moreover, transfection with siRab9 promoted the rate of apoptosis in AGS and MKN45 cells through regulating the Bcl-2–Bax axis and the Caspase cascade. We also found that silencing of Rab9 inhibited activation of the Akt signaling pathway by downregulating the phosphorylation level of Akt. In conclusion, our data suggest that Rab9 plays an oncogenic role in the progression of gastric cancer, providing a potential target for the treatment of gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document