Theoretical Calculation of Optical Absorption of Noble Metal Nanoparticles Using a Simple Model: Effects of Particle Size and Dielectric Function

2015 ◽  
Vol 12 (10) ◽  
pp. 2997-3005 ◽  
Author(s):  
Jayanta K. Majhi ◽  
Atis C. Mandal ◽  
Probodh K. Kuiri
Author(s):  
Lamei Luo ◽  
Mei Yang ◽  
Guangwen Chen

A stabilizer-free method based on segmented flow for the continuous synthesis of TiO2 supported noble metal nanoparticles (M/TiO2-MR, M = Pd, Pt or Au) was proposed. Due to the enhanced mixing performance arising from the internal convection in the discrete plugs, the particle size of noble metal nanoparticles could be well controlled by reducing the metal precursors with NaBH4 just in the presence of TiO2 without using any stabilizer. In comparison with the batch method, the as-prepared M/TiO2-MR had smaller noble metal particle size and better dispersity. Experimental results showed that adjusting the oil-to-water phase ratio or increasing the total volume flow rate and synthetic temperature could lead to smaller average particle size with narrower distribution. The as-prepared M/TiO2-MR possessed higher catalytic activities in the hydrolysis of ammonia borane than those prepared by the batch method, which could be ascribed to smaller noble metal nanoparticles, exposing more active sites.


2021 ◽  
Vol 129 (12) ◽  
pp. 125302
Author(s):  
Wajeeha Saeed ◽  
Zeeshan Abbasi ◽  
Shumaila Majeed ◽  
Sohail Anjum Shahzad ◽  
Abdul Faheem Khan ◽  
...  

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 107 ◽  
Author(s):  
Ming Qin ◽  
Qing Chang ◽  
Yinkai Yu ◽  
Hongjing Wu

By the deposition of noble metal nanoparticles on a metal oxide substrate with a specific micro-/nanostructure, namely, yolk-shell structure, a remarkable improvement in photocatalytic performance can be achieved by the composites. Nevertheless, noble metal nanoparticles only distribute on the surface shell of metal oxide substrates when the conventional wet-chemistry reduction approach is employed. Herein, we proposed a novel acoustic levitation synthesis of Pt nanoparticles deposited on yolk-shell La2O3. The composites not only displayed well-defined, homogeneous distribution of Pt NPs on the exterior shell of La2O3 and the interior La2O3 core, but an enhanced chemical interaction between Pt and La2O3. The unique structure not only can display improved photocatalytic degradation rate toward methyl orange, but also may show great potential in fields of hydrogen generation, environmental protection, etc. The novel acoustic levitation synthesis can supplement the methodology of synthesizing well dispersed noble metal oxides over the whole yolk-shell structure through noble metal NPs deposition method.


Sign in / Sign up

Export Citation Format

Share Document