Heat Transfer in Eccentric-Concentric Rotation of a Disk and Fluid at Infinity

2016 ◽  
Vol 13 (10) ◽  
pp. 6482-6487
Author(s):  
Ilyas Khan ◽  
Tarek Nabil Ahmed Abdelhameed ◽  
L. C. C Dennis

Heat transfer due to free convection flow in eccentric-concentric rotation of a disk and fluid at infinity is studied in this work Exact solutions for velocity and temperature are obtained by using the Laplace transform technique. The performed calculations disclose that the free convection parameter, Prandtl number, radiation parameter, and dimensionless time have strong influence on fluid velocity and temperature. The graphs are presented for such influence and examined carefully.

1970 ◽  
Vol 67 (3) ◽  
pp. 677-688
Author(s):  
P. C. Sinha ◽  
Punyatma Singh

The paper deals with the free convection flow along a vertical plate moving arbitrarily in its own plane. The basic equations of the boundary-layer flow and heat transfer are linearized and the first two approximations are considered. The first approximation is the case of steady-state free convection flow while the second approximation is the response of the fluid velocity and temperature fields to the motion of the plate for which limiting solutions are obtained by the Laplace transform technique in two regions; namely, for large times and for small times. The particular case when the plate is given an impulsive start at t = 0 is investigated in detail. It is shown how the skin friction and the rate of heat transfer at the plate respond to the motion of the plate.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Nor Athirah Mohd Zin ◽  
Ilyas Khan ◽  
Sharidan Shafie

Influence of thermal radiation on unsteady magnetohydrodynamic (MHD) free convection flow of Jeffrey fluid over a vertical plate with ramped wall temperature is studied. The Laplace transform technique is used to obtain the analytical solutions. Expressions for skin friction and Nusselt number are also obtained. Results of velocity and temperature distributions are shown graphically for embedded parameters such as Jeffrey fluid parameterλ, Prandtl numberPr, Grashof numberGr, Hartmann numberHa, radiation parameterRd, and dimensionless timeτ. It is observed that the amplitude of velocity and temperature profile for isothermal are always higher than ramped wall temperature.


2012 ◽  
Vol 79 (6) ◽  
Author(s):  
Kalidas Das

In the present study, the effects of radiation and chemical reaction on unsteady free convection flow and mass transfer of a viscous, electrically conducting incompressible fluid near an impulsively moving vertical flat plate with ramped wall temperature is studied. The primary purpose of this study is to characterize the effects of ramped wall temperature, radiation parameter, chemical reaction parameter, Schmidt number etc., on the flow properties. Exact solutions of the present problem are obtained in closed form by Laplace transform technique. The variations in fluid velocity, temperature and concentration are shown graphically whereas numerical values of skin friction, rate of heat and mass transfer are presented in tabular form to observe the effects of various parameters.


2015 ◽  
Vol 70 (6) ◽  
pp. 397-401 ◽  
Author(s):  
Ilyas Khan

AbstractIn this note, we investigate the unsteady free convection flow of a Jeffrey fluid past an infinite isothermal vertical plate. Exact solutions are obtained using the Laplace transform technique. These solutions are expressed in terms of exponential and complementary error functions, and satisfy all imposed initial and boundary conditions as well as the governing equations. The expression for the shear stress is also evaluated. The corresponding solutions for a Newtonian fluid can be easily obtained as a special case. It is found from the velocity and shear stress solutions that they strongly depend on the material parameters of a Jeffrey fluid. The exact solutions obtained here can be used as a benchmark for checking the correctness of other approximate or numerical solutions. In addition, this note will help in understanding the characteristics of non-Newtonian fluid flows that are subject to free convection due to buoyancy force.


2016 ◽  
Vol 20 (6) ◽  
pp. 1939-1852 ◽  
Author(s):  
Abid Hussanan ◽  
Ilyas Khan ◽  
Mohd Salleh ◽  
Sharidan Shafie

This article investigates the effects of slip condition on free convection flow of viscous incompressible fluid past an oscillating vertical plate with Newtonian heating and constant mass diffusion. The governing equations together with imposed initial and boundary conditions are solved using the Laplace transform technique. The results for velocity, temperature and concentration are obtained and plotted for the embedded parameters. The results for skin friction, Nusselt number and Sherwood number are computed in table. It is investigated that the presence of slip parameter reduces the fluid velocity.


2017 ◽  
Vol 13 (4) ◽  
pp. 654-658 ◽  
Author(s):  
Asma Khalid ◽  
Ilyas Khan ◽  
Sharidan Shafie

An analytical investigation is carried out to study the unsteady free convection flow of micropolar fluids over an oscillating vertical plate. Wall couple stress is engaged at the bounding plate with isothermal temperature. Problem is modelled in terms of coupled partial differential equations together with some physical conditions and then written in non-dimensional form. Exact solutions are obtained using the Laplace transform technique. Analytical results of velocity, microrotation and temperature are plotted in graphs and discussed for various embedded parameters. Excellent validation of present results is achieved with existing results in literature. It is observed that, the velocity is smaller for micropolar fluids than for Newtonian fluids.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Sami Ul Haq ◽  
Ilyas Khan ◽  
Farhad Ali ◽  
Arshad Khan ◽  
Tarek Nabil Ahmed Abdelhameed

The objective of this study is to explore the influence of wall slip condition on a free convection flow of an incompressible viscous fluid with heat transfer and ramped wall temperature. Exact solution of the problem is obtained by using Laplace transform technique. Graphical results to see the effects of Prandtl number Pr, timet, and slip parameterηon velocity and skin friction for the case of ramped and constant temperature of the plate are provided and discussed.


2019 ◽  
Vol 1 (2) ◽  
pp. 118-121
Author(s):  
Fasihah Zulkiflee ◽  
Sharidan Shafie ◽  
Ahmad Qushairi Mohamad

This paper investigated unsteady free convection flow between two parallel plates with mass diffusion. One of the plate are considered oscillating. Appropriate non-dimensional variables are used to reduce the dimensional governing equations along with imposed initial and boundary conditions. The exact solution for velocity, temperature and concentration profiles are obtained using the Laplace Transform technique. The graphical results of the solutions are presented to illustrate the behavior of the fluid flow with the influenced of Schmidt number, Prandtl number, oscillating parameter, Grashof and mass Grashof number. The corresponding expressions for skin friction, Nusselt number and Sherwood number are also calculated. It is observed that increasing Prandtl and Schmidt number will increased the Nusselt number but decreased the skin friction.


2017 ◽  
Vol 22 (4) ◽  
pp. 945-964
Author(s):  
K. K. Pandit ◽  
D. Sarma ◽  
S. I. Singh

Abstract An investigation of the effects of a chemical reaction and thermal radiation on unsteady MHD free convection heat and mass transfer flow of an electrically conducting, viscous, incompressible fluid past a vertical infinite flat plate embedded in a porous medium is carried out. The flow is induced by a general time-dependent movement of the vertical plate, and the cases of ramped temperature and isothermal plates are studied. An exact solution of the governing equations is obtained in closed form by the Laplace Transform technique. Some applications of practical interest for different types of plate motions are discussed. The numerical values of fluid velocity, temperature and species concentration are displayed graphically whereas the numerical values of skin friction, Nusselt number and Sherwood number are presented in a tabular form for various values of pertinent flow parameters for both ramped temperature and isothermal plates.


Sign in / Sign up

Export Citation Format

Share Document