Evaluation of the Key Physical Parameters of Compressive Strained Ge1-x Snx for Optoelectronic Devices

2016 ◽  
Vol 13 (10) ◽  
pp. 7399-7407
Author(s):  
Li Yu-Chen

Both strain technology and alloying technology can change the band structures of Germanium semiconductor. This paper focus on evaluation of the key physical parameters, such as energy levels and effective mass, of germanium under strain and alloy conditions, on the basis of deformation potential theory and kp perturbation theory. The results show that: (1), The bandgap transition in Ge1-xSnx alloy cannot occur under strain. So the transformation efficiency of the strained Ge1-xSnx/(001)Ge based devices can not be improved; (2), The various hole effective masses of strained Ge1-xSnx/(001)Ge decrease with the increase of the stress, which benefits to the pMOS performance improvement. Our valid models can provide the valuable references to the design of modified Ge semiconductor and optoelectronic devices.

2011 ◽  
Vol 55-57 ◽  
pp. 979-982
Author(s):  
Jian Jun Song ◽  
Heng Sheng Shan ◽  
He Ming Zhang ◽  
Hui Yong Hu ◽  
Guan Yu Wang ◽  
...  

Strained Si1-xGextechnology has been widely adopted to enhance hole mobility. One of the most important physical parameters is density of state near the top of valence band in strained Si1-xGexmaterials. In this paper, we first obtained the hole effective mass along arbitrarily k wavevector directions, the hole isotropic effective masses and density of state effective mass of hole in strained Si1-xGex/(001)Si with the framework of K.P theory. And then, model of density of state near the top of valence band in strained Si1-xGex/(001)Si materials was established, which can provide valuable references to the understanding on its material physics and theoretical basis on the other important physical parameters.


1988 ◽  
Vol 102 ◽  
pp. 343-347
Author(s):  
M. Klapisch

AbstractA formal expansion of the CRM in powers of a small parameter is presented. The terms of the expansion are products of matrices. Inverses are interpreted as effects of cascades.It will be shown that this allows for the separation of the different contributions to the populations, thus providing a natural classification scheme for processes involving atoms in plasmas. Sum rules can be formulated, allowing the population of the levels, in some simple cases, to be related in a transparent way to the quantum numbers.


2014 ◽  
Vol 29 (21) ◽  
pp. 1444010
Author(s):  
Bruce H. J. McKellar ◽  
T. J. Goldman ◽  
G. J. Stephenson

If fermions interact with a scalar field, and there are many fermions present the scalar field may develop an expectation value and generate an effective mass for the fermions. This can lead to the formation of fermion clusters, which could be relevant for neutrino astrophysics and for dark matter astrophysics. Because this system may exhibit negative pressure, it also leads to a model of dark energy.


2013 ◽  
Vol 114 (3) ◽  
pp. 359-367 ◽  
Author(s):  
A. D. Bykov ◽  
K. V. Kalinin ◽  
A. N. Duchko

Author(s):  
Issei Suzuki ◽  
Zexin Lin ◽  
Sakiko Kawanishi ◽  
Kiyohisa Tanaka ◽  
Yoshitaro Nose ◽  
...  

Valence band dispersions of single-crystalline SnS1-xSex solid solutions were observed by angle-resolved photoemission spectroscopy (ARPES). The hole effective masses, crucial factors in determining thermoelectric properties, were directly evaluated. They decrease...


Author(s):  
Pooja Basera ◽  
Arunima Singh ◽  
Deepika Gill ◽  
Saswata Bhattacharya

Lead iodide perovskites have attracted considerable interest as promising energy-materials. However, till date, several key electronic properties such as optical properties, effective mass, exciton binding energy and the radiative exciton...


2017 ◽  
Vol 6 (1) ◽  
pp. 20
Author(s):  
V. Goyal ◽  
B. S. Dhaliwal

Ultra-wideband (UWB) uses very low energy levels to transfer data at very high data rate and bandwidth. An optimal and correct choice of transmission pulse shape is an important criterion in this technology. In this paper, we will present an approach for the generation of an optimal pulse shape with the optimal generation of pulse shape values that can provide effective results when transmitted using multiple access modulation technique over a multipath channel and received by a RAKE type receiver. The bit error analysis of constructed model is also given using Ideal Rake, selective RAKE, and partial RAKE receiver configurations.


Sign in / Sign up

Export Citation Format

Share Document